CHROM. 23 561

Prediction of retention indexes

II. Structure-retention index relationship on polar columns

C. T. Peng* and Z. C. Yang

Department of Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco, CA 94143-0446 (USA)

S. F. Ding

Department of Chemistry, Beijing Normal University, Beijing (China)

(First received September 17th, 1990; revised manuscript received June 4th, 1991)

ABSTRACT

A method is described for the prediction of the retention index (I) from chemical structure, using the number of atoms in the molecule (Z), the I increment for atom addition (A) and the group retention factors (GRFs) of the functional groups and substituents. This method can predict the retention indexes of a wide range of compounds, such as acids, alcohols, amines, acid esters, aldehydes, ketones, ethers, aromatic hydrocarbons, alicyclics, heterocyclics, etc. on polar as well as non-polar columns to within 3% error. Accurate A and GRF values are essential to the prediction. These values can be obtained from homologous series, but a system of arbitrarily assigned A value and adjusted GRFs are also used. The GRFs of the substituents and functional groups depend on the polarity and polarizability of the analyte and the stationary phase and also on the molecular connectivity of the atoms, namely, primary, secondary and tertiary carbon atoms or hydrogen atoms, to which these groups are attached. Highly polar and polarizable groups can alter the A value. When the functionality of a group is masked by substitution, the analyte molecule will tend to behave chromatographically like hydrocarbons. The difficulty in predicting the I values of compounds of multi-functionality by the rule of additivity is the unknown intramolecular interaction that can alter both A and GRF values.

INTRODUCTION

In tritium labeling by radiation-induced reactions, the desired product is often formed together with some labeled by-products. To understand the mechanism of labeling, these by-products must be identified. The by-products are formed in no-carrier-added state and have negligible mass; even if all the material formed in a single run is collected, the amount will still be insufficient to establish their identity by conventional analytical techniques. The volatile by-products can be separated by gas chromatography and detected by radioactivity. On non-polar and polar columns, the radioactive peaks have

characteristic retention indexes (I), from which one may gain preliminary structural information.

We reported earlier [1] a structure-retention index relationship for predicting the retention index of a compound on non-polar columns (SE-30, DB-1), based on (i) the number of carbon and carbon equivalent atoms (Z) in the molecule, (ii) the retention index increment (A) for atom addition and (iii) the group retention factors (GRFs) for substituents and functional groups. This report shows that this same approach can be applied to predict I on polar columns using GRF constants derived for substituents and functional groups on polar columns.

EXPERIMENTAL

The materials and methods are essentially those described in the previous paper [1]. A stainless-steel column, $3.05 \text{ m} \times 3.175 \text{ mm I.D.}$, packed with 10% Carbowax 20M (CW-20M) on 80-100 mesh Supelcoport (Supelco, Bellefonte, PA, USA) and a fused-silica capillary column DB-Wax (15 m \times 0.53 mm I.D., film thickness 1.0 µm) (J & W Scientific. Folsom, CA, USA) were used. A linear temperature program was adopted, beginning at 40°C isothermally for 4 min, after which the temperature was increased to 200°C at the rate of 8°C/min and maintained for 60 min or longer as required. The injection port was kept at 250°C and the detector at 300°C. A mixture of *n*-alkanes, from pentane (C_5) to hexacosane (C_{26}) or to dotriacontane (C_{32}) , was used as markers; when necessary the standard were injected together with the analyte. Retention index measurements were preferably made on small mass peaks. For large mass peaks that are truncated at the full-scale height, the truncated width, expressed in time, is subtracted from the retention time reported by the electronic integrator for I calculation. I was computed using the equation of Van den Dool and Kratz [2], thus:

$$I = 100i \cdot \frac{X - M_{(n)}}{M_{(n+1)} - M_{(n)}} + 100n \tag{1}$$

where n is the number of carbon atoms in n-alkanes used as markers; X, $M_{(n)}$, and $M_{(n+i)}$ are the adjusted retention times of the analyte, the normal alkane marker with n carbon atoms eluting before and that with (n+i) carbon atoms eluting after the analyte, respectively; i is the interval and usually has the value of 1 or 2.

Linear regression analysis of I vs. the number of atoms in homologous series was performed on a 486 personal computer, using SAS statistical program for the PC, from the SAS Institute (Cary, NC, USA). Statistical data listed for the regression equations include (i) the number of data values in the set (n), (ii) the standard errors (S.E.) for the regression coefficient and the intercept, (iii) the coefficient of determination (R^2) and (iv) significance probability (p), i.e., the probability of getting a greater F statistic than that obtained if the hypothesis is true. The meaning of these terms is given in ref. 3.

RESULTS AND DISCUSSION

The prediction of *I* is based on the fact that the *I* value of a monofunctional molecule is invariably higher than that of a *n*-alkane molecule of equal atom number. This leads to the use of *GRF*s for *I* contributions from substituents and functional groups. The Kováts convention for calculating *I* is adopted [4]. According to this convention, *n*-hexane will be assigned a *I* of 600 on both non-polar and polar columns, irrespective of their different retention times.

The I values of n-alkanes increase with the number of carbon atoms (n) in the molecule and can be expressed as:

$$I = 100n \tag{2}$$

This value is also known as the base value [1] when n is replaced with Z, the total number of atoms in the molecule. Z includes carbon atoms and carbon equivalent atoms, such as oxygen, nitrogen, sulfur, chlorine, bromine and iodine, which may be found in the molecule. Compounds containing substituents, functional groups and other structural features will have higher I values than the base values. The I values of a homologous series will increase smoothly with increasing numbers of the carbon atoms or methylene groups in the homologues. A plot of the observed I values against n or Z values will yield a straight line which may be represented by the following linear regression equations:

$$I = An + (GRF)_n \tag{3}$$

$$= AZ + (GRF)_Z \tag{4}$$

where A is the regression coefficient, representing the I increment for atom addition, and GRF the intercept, representing the group retention factor or functionality constant. The subscript differentiates between the GRFs based on n or Z. In eqns. 3 and 4 shown above, Z is greater than n but $(GRF)_z$ is smaller than $(GRF)_n$. The term $(GRF)_n$ may also contain the atom contribution of the substituent. Table I lists the GRF and A values for a number of homologues of monofunctionality on DB-Wax and CW-20M columns.

The magnitude of the *GRF* is dependent not only upon the polarity and polarizability of the substituent and functional group but also on the stationary

Subst	tuent and functional group	Formula	GRF	
			Calculated by eqn. 7 $(A = 100)$	By linear regression equation
	Aliphatic series			10.4V a
(1)	Alkanoic acids	R-COOH		
	Analabs data ^a			$997.15 \pm 2.61 (107.69 \pm 0.27)^{b}$ (n = 6, R^{2} = 1.0000, p = 0.0001
	Our data		1029	$994.09 \pm 9.85 (103.72 \pm 0.99)$ $(n = 11, R^2 = 0.9992, p = 0.0001$
(2)	Primary alcohols	R-CH ₂ -OH		•
	Analabs data ^a			$648.79 \pm 0.65 (102.65 \pm 0.066)$ (n = 5, R^2 = 1.000, p = 0.0001
	Our data		647	$632.86 \pm 5.97 (100.92 \pm 0.49)$ $(n = 11, R^2 = 0.9998, p = 0.0001$
	Secondary alcohols Tertiary alcohols	>CH-OH	530	,
	(2-methyl-2-alkanols)	-С-ОН 	410	$394.90 \pm 2.73 (98.53 \pm 0.73)$ $(n = 5, R^2 = 1.0000, p = 0.0001)$
(5)	Primary amines, 1°	R-CH ₂ -NH ₂	417	$407.29 \pm 3.35 (101.06 \pm 0.35)$ $(n = 8, R^2 = 0.9999, p = 0.0001)$
	2°	R-CH-NH ₂	350	, , , , , , , , , , , , , , , , , , , ,
	3°	R-C-NH ₂	229	
	Secondary amines	R-CH ₂ -NH-R'	180	
	Tertiary amines	R'R"NR'"	(See text)	(See text)
,	Aldehydes	R-CH ₂ -CHO	388	$375.50 \pm 3.11 (102.50 \pm 0.34)$ $(n = 5, R^2 = 1.0000, p = 0.0001)$
(9)	Ketones, "peripheral"	R-CH ₂ -CO-CH ₃	388	
(10)	"inner"	$R-CH_2-CO-CH_2-R'$	355	
(10)	Fatty acid esters (our data)	D CII COOCII	20.4	707.00
	methyl esters	R-CH ₂ -COOCH ₃	294	$302.88 \pm 4.71 (99.91 \pm 0.45)$ $(n = 9, R^2 = 0.9999, p = 0.0001)$
	ethyl esters	R-CH ₂ -COOC ₂ H ₅	270	$288.85 \pm 16.55 (96.79 \pm 1.50)$ $(n = 10, R^2 = 0.9981, p = 0.0001)$
	propyl esters	R-CH ₂ -COOC ₃ H ₇	259	$288.70 \pm 16.09 (95.93 \pm 1.34)$ (n = 10, R ² = 0.9984, p = 0.0001)
	butyl esters	R-CH ₂ -COOC ₄ H ₇	256	$276.50 \pm 25.48 (96.34 \pm 2.15)$ $(n = 6, R^2 = 0.9980, p = 0.0001)$
(11)	Ether linkage	C-CH ₂ -O-CH ₂ -C	70	-, -, -, -, -, -, -, -, -, -, -, -, -, -
(12)	Alkyl thiol	R-SH	370	
	Sulfide linkage	R-S-R'	256	
	Disulfide linkage	R-S-S-R'	377	
, ,	Terminal carbon-carbon double bond	$R-CH_2-CH=CH_2$	40	
	Terminal carbon-carbon triple bond	$R-CH_2-C \equiv CH$	300	
(17)	Non-terminal carbon-carbon double bond	R-CH=CH-R' C	60	
(18)	Quaternary carbon atom	c-c-c	(-)100	

TABLE I (continued)

Substituent and functional group	Formula	GRF	
		Calculated by eqn. 7 $(A = 100)$	By linear regression equation
	Ç		
(19) Tertiary carbon atom	C-C-X	(-) 75	
(20) Iso carbon/chain branching	R-CH(CH ₃) ₂ or R-CHR ₁ R ₂	(-) 50	
(21) Adjacent carbon-carbon double bond and carbonyl bond	R-C=C-C=O	53	
(22) N-Ethylamine group(23) Acid amide group(24) Monosubstituted acid amido group	R-NH-C ₂ H ₅ R-CO-NH ₂ R-CO-NHR'	(-) 50 1600 ($A = 45$) 1430 ($A = 45$) 1016 ($A = 64$)	
(25) Disubstituted acid amido group(26) Chlorine atom connected to methylene group	R-CO-NR ₂ R-CH ₂ -Cl	464	$426.91 \pm 2.42 (104.11 \pm 0.24)$ $(n = 11, R^2 = 1.0000, p = 0.0001)$
(27) Bromine atom connected to methylene carbon	R-CH ₂ -Br	592	$515.33 \pm 8.75 (107.89 \pm 0.81)$ $(n = 12, R^2 = 0.9994, p = 0.0001)$
(28) Bromine atom connected to tertiary carbon	R-CH-Br	492	$486.05 \pm 18.18 (100.72 \pm 2.22)$ $(n-5, R^2 = 0.9985, p = 0.0001)$
(29) Bromine atom in 2-bromoalkanoic acids, ethyl ester	R-CHBr-COOC ₂ H ₅	386	(,, j
(30) Iodine atom connected to methylene atom	R-CH ₂ ·I	710	$633.85 \pm 5.71 (109.88 \pm 0.66)$ $(n = 12, R^2 = 0.9996, p = 0.0001)$
(31) Difference between cis and trans isomers		60	
(B) Alicyclic series	Z. 11	105	
(1) Cyclopropane ring	C_3H_6	110	
(2) Cyclobutane ring	C ₄ II ₈	122	
(3) Cyclopentane ring	C_5H_{10}		
(4) Cyclopentene ring	C ₅ H ₈	163	
(5) Cyclopentadiene ring	C ₅ H ₆	210	
(6) Cyclohexane ring	C ₆ H ₁₂	123	
(7) Cyclohexene ring	C_6H_{10}	208	
(8) Cycloheptane ring	C_7H_{14}	183	
(9) Cycloheptene ring	C_7H_{12}	217	
(10) Difference between cis and trans isomers		30	
(11) Alicyclic –OH group	>CH-OH	580	
(12) Alicyclic C=O group	>C $=$ O	465	
(13) $C = C - C = O$ group in cyclopentene ring	C = C - C = O	106	
(14) $C=C$ $C=O$ group in cyclohexene ring	C = C - C = O	40	
(15) Oxygen atom in the 5-membered ring	-O-	80	
(16) Oxygen atom in the 6-membered ring	-O-	160	
(17) Alicyclic amino group	$>$ CH $-$ NH $_2$	350	
(18) Sulfur atom in 5-membered ring	> S	200	
(19) Imino group in cyclopentadiene ring	СС N—н	800	
(20) Imino group in cyclopentane ring	С——С N——Н	380	

TABLE I (continued)

Substi	tuent and functional group	Formula	GRF	
			Calculated by eqn. 7 $(A = 100)$	By linear regression equation
(21)	Tertiary nitrogen atom in azole ring	c—c c	140	
(22)	Tertiary nitrogen atom in azine ring	c—c v—c	200	
(23)	1,2-Diaza group in azole ring	N—H	300	
(24)	1,3-Diaza group in azole ring	м—н	800	
(25)	1,3-Diaza group in N-methylated azole ring	NCH3	550	
(26)	Onc C=C bond in azole ring, additional contribution		40	
(27)	Two C=C bonds in azole ring, additional contribution		190	
(28)	Imino –NH– group connected to 2 double bonds in 5-membered ring	C = C - NH - C = C	800	
(29)	Methyl group ortho to ring N		(-) 70	
	Imino -NH- group in azine ring		325	
	1,4-Diaza group in azine ring		30	
	1,3-Diaza group in azine ring		80	
	1,2-Diaza group in azine ring	D/ C1	520	
	Cl atom attached to cyclohexane ring Cl atom attached to 1-cyclohexene ring	R'-Cl	440 369	
	Br atom attached to cyclohexane ring	R'-Br	580	
	Br atom attached to 1-cyclohexene ring		516	
	I atom attached to cyclohexane ring	R'-I	726	
(39)	I atom connected to 1-cyclohexene ring		676	
	romatic series		250	
	Benzene ring		350	
	1,3-Cyclohexadiene ring		264	
	Ethynyl group connected to phenyl ring	Ar-C≡CH	314 210	
	Carbon-carbon double bond connected to phenyl ring	$Ar-CH=CH_2$	80	
	Fusion between two phenyl rings		60	
	Link between two phenyl rings		80	
٠,	Phenolic -OH	Ar-OH	900	
	Aryl ether –O– linkage	Ar-O-R	190	
(6)	Aryl aldehyde/ketone	Ar-CHO or	388	
(7)	And thiol	Ar–CO–R(Ar′) Ar–SH	340	
	Aryl thiol Aryl –NH ₂ group	Ar-NH,	667	
(0)	Alyi =M112 group	/ 11 - 1 1 1 1 2	007	

TABLE I (continued)

Substituent and functional group	Formula	GRF			
		Calculated by eqn. 7 $(A = 100)$	By linear regression equation		
(9) Aryl aryl imino –NH– group	Ar-NH-Ar'	586			
(10) Aryl alkyl imino NH group	Ar NH R	523			
(11) Additional –NH– group to N-methyl piperidine ring		240			
(12) Phenyldimethylamino group	$Ar-N(CH_3)_2$	260			
(13) Tertiary nitrogen in 6-membered ring	C-N=C	240			
(14) Additional nitrogen to form 1,4-diaza ring	C-N = C-C = N	30			
(15) Additional nitrogen to form 1,3-diaza ring	C-N=C-N=C	80			
(16) Additional nitrogen to form 1,2-diaza ring	C-N-N-C or $C=N-N=C$	520			
(17) Nitrogen in the iso position of the quinoline ring		4 0			
(18) Methyl group in the ortho position to ring N		(··) 70			
(19) Methyl group in the para position to ring N		. 70			
(20) Methyl group in the peri position to ring N		(-)100			
(21) Aryl chlorine atom	Ar-Cl	276			
(22) Aryl bromine atom	Ar-Br	426			
(23) Aryl iodine atom	Ar-I	604			
(24) Size factor		120			
(D) Ortho effects		0.1.00			
(1) Adjacent groups in benzene ring		Ortho effect a/b			
CII ₃ + CH ₃		(+) 50			
CH ₃ + COOH		(-) 40			
$CH_3 + N(C_2H_5)_2$		(-)300			
$C_6H_5 + C_6H_5$		(-)400			
$NH_2 + C_2H_5$		(-) 70			
NH ₂ + Cl		(-) 70			
NH ₂ + OCH ₃		(-)160			
$NH_2 + OC_2H_5$		(-)227			
NH ₂ + COOCH ₃ NH ₂ + CHO		(-)200 (-)220			
OH + CH ₃		(-)100			
$OH + C_2H_5$		(-)100			
$OH + CH_2CH = CH_2$		(-)150			
OH + tertbutyl		(-) 90			
OH + OCH ₃		(-)500			
$OH + OC_2H_5$		(-)610			
OH + CHO		(-)870			
$OH + CO-CH_3$		(-)870			
OH + CO-OC ₂ H ₅		(-)925			
Cl + OH		(-)390			
Br - OH		(-)242			
Br + CHO		(-)126			
CO-OC ₂ H ₅ + CO-OC ₂ H ₅ (2) Conjugate substituting in 1.4 positions of		(···) 90			
(2) Conjugate substituents in 1,4 positions of		Para			
phenyl ring		effect			
CHO + OCH)		(+) 60			
CHO + $N(CH_3)_2$		(+)360			

^a Data from ref. 15,

b The GRF values calculated by linear regression equations are given in the form of $GRF \pm S.E.$ ($A \pm S.E.$) where A is the regression coefficient and S.E. the standard errors. The statistics given are the number of data points (n), standard errors for the regression coefficient and the intercept (S.E.), the coefficient of determination (R^2) and the significance probability (p), i.e., the probability of getting a greater F statistic than that obtained if the hypothesis is true. It should be pointed out that all regression analysis can be seriously distorted by a single incorrect data value (see ref. 3).

phase. The highly polar carboxyl, hydroxyl and amino groups interact strongly with the polar stationary phase and are retained longer than the less polar substituents. The difference between the I values of the analyte on polar and non-polar columns is known as the column difference (ΔI) , expressed as follows:

$$\Delta I = (I)_{\text{CB-20M}} - (I)_{\text{SE-30}}$$
 (5)

or

$$\Delta I = (GRF)_{\text{polar}} - (GRF)_{\text{non-polar}}$$
 (6)

Eqn. 6 is based on the assumption that the analyte has similar A values on both polar and non-polar columns. The column difference is characteristic of the analyte molecule and is determined by aromaticity, unsaturation, conjugation, electron density and polarizability of the molecule [5].

It may be pointed out that the use of *n*-alkanes as markers for I calculation is preferred. Other markers such as methyl esters of fatty acids [6,7], 1-nitroalkanes [8], *n*-alkyl trichloroacetates [9], etc. [10,11] containing polar and polarizable groups that are not inert, may render the calculation of GRFs difficult. The GRF can be a good index for ranking the polarity and polarizability of the stationary phases; this ability will be lost when polar and polarizable substances are used as markers. Research activities in the field of retention index, especially regarding the use of *n*-alkanes, have been comprehensively reviewed [12,13]. Contributions to I by primary, secondary, and tertiary alcohol functionalities were first discussed by Kováts in 1965 [14].

In the absence of known A and GRF values, the I value (I_p) may be predicted using the following expression [1]:

$$I_{\rm p} = 100Z + \Sigma m_i - \Sigma n_i \tag{7}$$

where Z is the total number of carbon atoms and carbon equivalent atoms. The terms m_i and n_i represent the GRFs of *i*th functional group and substituent. Acid, alcohol, aldehyde, amine, ether, ketone, phenol, single and fused phenyl rings, isolated and conjugated double bonds, *ortho* effect a, para effect, etc. give positive GRFs, and chain branching, quaternary carbon, ortho effect b, etc. give negative GRFs.

The A in eqn. 7 is arbitrarily assigned a value of

100 with the m_i and n_i adjusted accordingly to match the I_p with the observed value (I_{obs}). The I_p from eqn. 7 and the I from eqns. 3 and 4 should be within 3% error of the I_{obs} . On polar columns the I values for small molecules may show large fluctuations, and many polar compounds do not emerge from the column. Linear regression equations for all the homologous series studied have regression coefficients near 100, with only a few exceptions. This justifies the use of eqn. 7 as a predictor of I. GRFs of substituents and functional groups for CW-20M and DB-Wax columns are given in Table I. Groups of the compounds studied are given below. I data from other sources are also included for comparison [15,16].

Cycloalkanes, cycloalkenes and aromatic hydrocarbons

Ring formation and the presence of double bonds increase I. For 6-membered carbocyclic ring compounds, the increase in I progresses from cyclohexane to cyclohexene to benzene. Cyclohexane, cyclohexene and benzene show GRF values of 123, 208 and 350 on polar column, and 62, 64 and 58 on non-polar column [1], respectively. The column difference (ΔI) is small for cyclohexane, moderate for cyclohexene and large for benzene. The GRF value for ring formation increases with increasing ring size from cyclopropane to cyclodecane. Other structural features, such as ring fusion, ring linkage, chain branching, etc. alter bond connectivity [17,18] and show only small column differences.

Table II lists the GRF and the functionality constants $(\Delta m_{\rm f})$ of different hydrocarbon rings. Derivation of GRF and $\Delta m_{\rm f}$ is given by eqns. 4 and 5 in ref. 1. These terms are used interchangeably here. The I of cyclopentadiene is unavailable but can be extrapolated from those of cyclopentane and cyclopentene; the extrapolated value is used for predicting the I values of polynuclear aromatics and heterocyclics containing the cyclopentadiene ring.

The terminal double bonds in aliphatic hydrocarbons contribute less to *I* than the non-terminal double bonds; chain branching and the presence of tertiary and quaternary carbon atoms in the molecule reduce the *I* by 50, 75 and 100 on polar column, respectively. Substitution of a H atom in alicyclic hydrocarbons by a methyl or an alkyl group decreases the *I* by 50, due to chain branching. Chain

TABLE II GRF_{S} (Δm_{t} VALUES) FOR THE FORMATION OF ALICYCLIC HYDROCARBONS FROM THEIR LINEAR ANALOGUES

Compound	Formula	$I_{ m obs}{}^a$	100Z	$\Delta m_{\mathrm{f}}{}^a$	
Cyclopropane	C ₃ H ₆	405	300	105	
Cyclopentane	C_5H_{10}	622	500	122	
Cyclopentene	C_5H_8	663	500	163	
Cyclohexane	C_6H_{12}	723	600	123	
Cyclohexene	C_6H_{10}	808	600	208	
1,3-Cyclohexadiene	C_6H_8	864	600	264	
1,4-Cyclohexadiene	C_6H_8	914	600	314	
Benzene	C_6H_6	950	600	350	
Cycloheptane	C_7H_{14}	883	700	183	
Cycloheptene	C_7H_{12}	917	700	217	
1,3-Cycloheptadiene	C_7H_{10}	1060	700	360	
1,3,5-Cycloheptatriene	C_7H_8	1089	700	389	
Cyclooctane	C_8H_{16}	1014	800	214	
Cyclooctene	C_8H_{14}	1035	800	235	
1,3-Cyclooctadiene	C_8H_{12}	1100^{b}	800	300	
1,5-Cyclooctadiene	C_8II_{12}	1164	800	364	
1,3,5,7-Cyclooctatetraene	C_8H_8	1199	800	399	
Cyclodecane	$C_{10}H_{20}$	1361	1000	361	

^a I_{obs} is the observed I; Δm_{f} is the functionality constant.

^b Value taken from ref. 16.

branching alters the molecular connectivity. The fusion and bond linking of two alicyclic rings in decahydrodronaphthalene and bicyclohexyl exert no influence on their *I* values. A comparison of the observed and predicted *I* values of some aliphatic and aromatic hydrocarbons is given in Tables III and IV.

The *I* values of polynuclear aromatic hydrocarbons may require the inclusion of a size factor. The co-planarity resulting from two or more phenylrings fusing together may increase the *I* of the molecule beyond the usually predicted value. Extended conjugated systems may also cause an increase in *I*.

Aliphatic carboxylic acids

The carboxylic acid group is highly polar; the lower homologues of the aliphatic acids can be chromatographed underivatized on polar and non-polar columns. The *GRF* for the aliphatic carboxyl group is 1029 for the *A* value equal to 100. In comparison, the *GRF* for the carboxyl group on non-polar DB-1 column is 257.09 with an associated

A value of 93.38 [1]. The column difference (ΔI) for the carboxyl group is about 770 units. Plotting the $I_{\rm obs}$ of a series of aliphatic carboxylic acid homologues against Z yields a straight line, as shown in Fig. 1. The regression coefficient (A) and the intercept (GRF) of the linear regression equation are given in Table I. The $\Delta m_{\rm f}$ for the aliphatic carboxyl group and the comparison of observed and predicted I of aliphatic carboxylic acids are given in Table V.

Carboxylic acid esters

On non-polar SE-30 column the esters of the fatty acids were found to behave chromatographically in the same way as aliphatic hydrocarbons [1]. The residual polarity and polarizability of the acid ester group may cause additional retention on CW-20M column. The GRF on polar column for this molecular moiety is equal to the column difference (ΛI). The methyl, ethyl, propyl and butyl acid esters have column differences of +294, +270, +259 and +256 units, respectively. This value must be added to the base value to yield the predicted I of the ester

TABLE III

COMPARISON OF OBSERVED AND PREDICTED I VALUES OF ALKANES^a

The GRFs (m_t and n_t) have the following values: (1) quaternary carbon atom = -100, (2) non-terminal C = C double bond = +60, (3) chain branching = -50, (4) cyclohexane ring = +123, (5) cyclohexane ring = +208, (6) phenyl ring = +350, (7) ethynyl group connected to phenyl ring = +210, (8) cycloheptane ring = +183, (9) cycloheptane ring = +217, (10) terminal C = C bond = +40, (11) aryl ether -O-linkage = +190, (12) 1,3-cyclohexadiene = +264, (13) 1,4-cyclohexadiene ring = +314.

Compound	Formula	$I_{ m obs}$	Lit. [16]	$100Z + \Sigma m_i - \Sigma n_i$	$I_{\mathfrak{p}}$	Difference (%)
Neohexane	C ₆ H ₁₄	500		600 - 100	500	0
n-Hexanc	C_6H_{14}	619		600	600	3.07
2,2,4-Trimethylpentane	C_8H_{18}	711		800 - 50 - 100	650	8.58
n-Heptane	C_7H_{16}	712		700	700	1.69
2,4,4-Trimethyl-1-pentene	C_8H_{16}	750		800 + 50 - 100 - 50	700	6.67
2-Heptene	C_7H_{14}	753		700 + 60	760	0.92
Methylcyclohexane	C_7H_{14}	784		700 + 123 - 50	773	1.4
I-Octene	C_8H_{16}	831		800 + 50	850	2.23
3-Methyl-1-cyclohexene	C_7H_{12}	852		700 + 208 - 50	858	0.7
4-Methyl-1-cyclohexene	C_7H_{12}	859		700 + 208 - 50	858	1.16
1,3-Dimethylcyclohexane	C_8H_{16}	860		$800 + 123 - 2 \times 50$	823	4.3
2-Octene	C_8H_{16}	875		800 + 60	860	1.71
I-Methyl-1-cyclohexene	C_7H_{12}	900		700 + 208	908	0.88
Methylcycloheptane	C_8H_{16}	935		800 + 183 - 50	933	0.21
Methylcycloheptene	C_8H_{14}	1000		800 + 217 - 50	967	3.3
4-Vinyl-1-cyclohexene	C ₈ H ₁₂	1039		800 + 208 - 50 + 50	1008	2.98
1-Decene	$C_{10}H_{20}$		1039	1000 + 40	1040	0.1
Dipentene (p-Mentha-1,8-diene)	$C_{10}H_{16}$	1204		1000 + 203 + 50 - 50	1203	0.08
1-Methoxy-1,3-cyclohexadiene	$C_7H_{10}O$	1250		800 + 264 + 190	1254	0.32
1-Methoxy-1,4-cyclohexadiene	$C_{7}H_{10}O$	1268		800 + 314 + 190	1304	2.76
1-Dodecene	$C_{12}H_{24}$		1241	1200 + 50	1250	0.72
Phenylacetylene	C_8H_6		1361	800 + 350 + 210	1360	0.07
Tricyclo[6,4,0,0(2,7)]dodecane	$C_{12}H_{20}$	1502		$1200 + 2 \times 123 + 80$	1526	1.57
1-Hexadecene	$C_{16}H_{32}$		1654	1600 + 50	1650	0.06
2,6,10.14-Tetramethylpentadecane	C19H40		1668	$1900 - 4 \times 50$	1700	1.88

^a The GRFs are listed in the order of their appearance in the table. $I_{\text{obs}} = \text{observed } I$; $I_{\text{p}} = \text{predicted } I$; Difference % = (Difference between I_{obs} and I_{p}) × 100/(I_{obs} or I_{p}).

on polar column. Tables VI and VII show a comparison of the observed and predicted I values of some fatty acid esters and aromatic acid esters. Substituents and functional groups in the *ortho* positions of the aromatic ring tend to interact and form hydrogen bonding to decrease I substantially. These are known as *ortho* effects b with negative GRF values.

Acid amides

The acid amide group contains both N and O

atoms and is probably the most polar and polarizable substituent encountered in our study. The acid amido group can drastically alter the A value of the molecule. Since only a small number of the lower members of the acid amide series were studied, the A and the GRF values obtained for the lower members may deviate somewhat from the linear relationship for the series. Our study shows that the free, the N-substituted and the N,N-disubstituted acid amides have A values of 45, 45 and 64, and GRF values of 1600, 1430 and 1016, respectively. The

TABLE IV

COMPARISON OF OBSERVED AND PREDICTED I VALUES OF AROMATIC HYDROCARBONS^a

The GRFs (m_i and n_i) have the following values: (1) phenyl ring = +350, (2) chain branching = -50, (3) cyclohexane ring = +123, (4) trans isomer—cis isomer = -60, (5) ortho effect a between two ortho methyl groups in the phenyl ring = +"50", (6) aryl Cl atom = +276, (7) cyclopentene ring = +163, (8) cyclopropyl ring = +105, (9) cyclohexene ring = +208, (10) cyclopentadiene ring = +210, (11) fusion of two phenyl rings = +60, (12) aryl ether -0—linkage = +190, (13) link between two phenyl rings = +80, (14) double bond conjugated with phenyl ring = +80, (15) aryl Br atom = +426, (16) ortho effect b between two phenyl rings = -"400", (17) size factor = +120. The quantation marks indicate that these values were arbitrarily selected.

Compound	Formula	$I_{ m obs}$	Lit. [16]	$100Z + \Sigma m_i - \Sigma n_i$	$I_{ m p}$	Difference (%)
Benzene	C ₆ H ₆	947		600 + 350	950	0.32
Toluene	C_7H_8	1051	1043	700 + 350	1050	0.1
Ethyl benzene	C_8H_{10}	1129		800 + 350	1150	1.93
p-Xylene	$p\text{-}C_8H_{10}$	1155	1138	800 + 350	1150	0.43
m-Xylene	m - C_8H_{10}	1164		800 + 350	1150	1.2
Cumene (isopropyl benzene) Decahydronaphthalene,	C9H12	1182		900 + 350 - 50	1200	1.5
trans	$C_{10}H_{18}$	1156	1163	$1000 + 2 \times 123 - 60$	1186	2.53
_ cis		1216		$1000 + 2 \times 123$	1246	2.41
Decahydronaphthalene, cis	$C_{10}H_{18}$	1227	1232	$1000 + 2 \times 123$	1246	1.52
n-Propylbenzene	C_9H_{12}	1228		900 + 350	1250	1.76
o-Xylene	$0-C_8H_{10}$	1232		800 + 350 + "50"	1200	2.6
1.3,5-Trimethyl benzene	C_9H_{12}	1271		900 + 350	1250	1.65
<i>p</i> -Cymene (4-isopropyltoluene)	$C_{10}H_{14}$	1272		1000 + 350 - 50	1300	2.15
1,2,4-Trimethyl benzene	C_9H_{12}	1311		900 + 350 + 50	1300	0.84
n-Butylbenzene	$C_{10}H_{14}$	1312	1316	1000 + 350	1350	2.81
m-Chlorotoluene	C_7H_7Cl		1313	700 + 350 + 276	1326	0.98
Indan	C_9H_{10}	1377	1365	900 + 350 + 163	1413	2.55
Cyclopropyl benzene	C ₉ H ₁₂	1414		900 + 350 + 105	1355	4.17
Bicyclohexyl	$C_{12}H_{22}$	1420	1431	$1200 + 2 \times 123$	1446	1.79
1,2,4,5-Tetramethylbenzene	$C_{10}H_{14}$	1459		$1000 + 350 + 2 \times 50$	1450	0.62
Tetralin	$C_{10}H_{12}$	1525	1525	1000 + 350 + 208	1558	2.31
Indene	C_9H_8	1526	1479	900 + 350 + 208 + 60	1518	0.52
Perhydrofluorene	$C_{13}H_{22}$		1632	$1300 + 2 \times 123 + 122$	1668	2.16
Cyclohexyl benzene	$C_{12}H_{16}$	1660	1662	1200 + 350 + 123	1673	0.66
1-Fluoronaphthalene	$C_{10}H_7F$		1715	$1000 + 2 \times 350 + 60$	1760	2.56
Naphthalene	$C_{10}H_8$	1739	1722	$1000 + 2 \times 350 + 60$	1760	1.19
o-Dimethoxybenzene	$C_8H_{10}O_2$	* 1.52	1715	$1000 + 350 + 2 \times 190$	1730	0.87
2-Methyl naphthalene	$C_{11}H_{10}$	1852	2712	$1100 + 2 \times 350 + 60$	1860	0.43
1-Methyl naphthalene	$C_{11}H_{10}$	1855		$1100 \div 2 \times 350 + 60$	1860	0.27
1-Ethylnaphthalene	$C_{12}H_{12}$		1943	$1200 + 2 \times 350 + 60$	1960	0.87
Biphenyl	$C_{12}H_{10}$	1974	1., 1.,	$1200 + 2 \times 350 + 80$	1980	0.3
Diphenylmethane	$C_{13}H_{12}$,,,,	1994	$1300 + 2 \times 350$	2000	0.3
2-Chloronaphthalene	$C_{10}H_7CI$		2006	$1000 + 2 \times 350 + 276$	2036	1.47
3,4-Dimethoxystyrene	$C_{10}H_{12}O_2$	2039		$1200 + 350 + 2 \times 190 + 80$	2010	1.42
Bibenzyl	$C_{10}H_{12}O_2$ $C_{14}H_{14}$	2061		$1200 + 350 + 2 \times 190 + 80$ $1400 + 2 \times 350$	2100	0.8
Acenaphthene	$C_{12}H_{10}$	2133	2108	$1200 + 2 \times 350$ $1200 + 2 \times 350 + 163 + 60$	2123	0.47
1-Methoxynaphthalene	$C_{11}H_{10}O$	2123	2143	$1200 + 2 \times 350 + 105 + 60$ $1200 + 2 \times 350 + 60 + 190$	2123	0.32
I-Phenyldodecane						
I-Bromonaphthalene	$C_{18}H_{30} \\ C_{10}H_7Br$		2155 2157	1800 + 350 1000 + 3 × 350 + 60 + 426	2150	0.23
1,2,3,4,5,6,7,8-Octahydroanthracene		2153	2137	$1000 + 2 \times 350 + 60 + 426$	2186	1.33
1,2,3,7,5,0,7,0°Cotanyuruammacene	$C_{14}H_{18}$	4133		$1400 + 350 + 2 \times 208$	2166	0.6

TABLE IV (continued)

Compound	Formula	$I_{ m obs}$	Lit. [16]	$100Z + \Sigma m_i - \Sigma n_i$	$I_{ m p}$	Difference (%)
Fluorene	$C_{13}H_{10}$	2264	2311	$1300 + 2 \times 350 + 208 + 2 \times 60$	2328	2.75
o-Terphenyl	$C_{18}H_{14}$	2649		$1800 + 3 \times 350 + 2 \times 80 - 400$	2610	1.47
Anthracene	$C_{14}H_{10}$	2630		$1400 + 3 \times 350 + 2 \times 60 + 120$	2690	0.81
Phenanthrene	$C_{14}H_{10}$	2712		$1400 + 3 \times 350 + 2 \times 60 + 120$	2690	0.03
p-Terphenyl	$C_{18}H_{14}$	3129		$1800 + 3 \times 350 + 2 \times 80 + 120$	3130	0.03
Pyrene	$C_{16}H_{10}$	3135		$1600 + 4 \times 350 + 120$	3120	0.48
2,3-Benzanthracene	$C_{18}H_{12}$	9999				
Triphenylene	$C_{18}H_{12}$	9999				

^a See footnote in Table III.

magnitude and trend of these A and GRF values suggest that substitution in highly polar and polarizable functional groups not only reduces the GRF but also alters the A value. Table VIII shows the comparison of observed and predicted I values of some free and substituted acid amides.

In Table VIII, formamide appears to have a higher *I* than acetamide, even though the latter has one more carbon atom than the former. In formamide the acid amido group is connected to a H

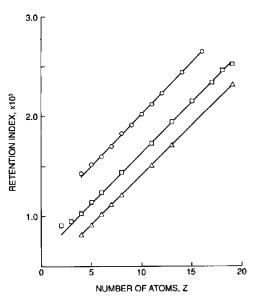


Fig. 1. Linear plots of I vs. the number of atoms (Z) of the homologous series of alkanoic acids (\bigcirc) , alkanols (\square) and aminoalkanes (\triangle) on polar column.

atom but not to a C atom. The atom to which the functional group is connected can strongly influence the GRF value. Other examples are amino $-NH_2$ and alcoholic -OH groups which give different GRFs when connected to secondary and tertiary C atoms.

Aliphatic alcohols

The primary alcohol (-CH₂-OH) group has a GRF value of +162 on non-polar column [1] and +641 on polar column, with a column difference of approximately 480. The hydroxyl group is one of the most polar functional groups. The linear plot of Z vs. I for the alkanols is given in Fig. 1 and the corresponding coefficient and intercept for the linear regression equation are listed in Table I.

Hydroxyl groups connected to secondary and tertiary carbon atoms form secondary and tertiary aliphatic alcohols and have GRF values of +530 and +410, respectively, on polar column. On non-polar column, the secondary and tertiary alcoholic -OH groups have GRF values of +85 and +15, respectively [1], yielding a column difference slightly smaller than the primary alcoholic -OH group. Table IX shows the $\Delta m_{\rm f}$ for the hydroxyl group in n-alkanols, and Table X compares the observed and predicted I values of other alcohols.

Phenols

The phenolic –OH group can undergo conjugation with the ring to yield a co-planar structure which gives a higher *GRF* than the alcoholic –OH group. The *I* values of the phenols listed in Table XI are taken from ref. 14. Substituents at the *ortho*

TABLE V THE $\Delta m_{\rm f}$ OF THE ALIPHATIC CARBOXYL GROUP AND COMPARISON OF OBSERVED AND PREDICTED IVALUES OF n-ALKANOIC ACIDS (ON CW-20M)^a

The GRFs have the following values: (1) aliphatic carboxylic acid group, R-COOH = +1029, (2) chain branching = -50, (3) cyclobutane ring = +110, (4) cyclopentane ring = +122.

Compound	Formula	$I_{ m obs}$	Lit.	100Z	$\Delta m_{ m f}$	$I_{\mathfrak{p}}$	Difference (%)
Acetic acid	$C_2H_4O_2$	1430	1430 [16]	400	1030	1429	0.07
n-Propionic acid	$C_3H_6O_2$	1518	1523 [16]	500	1018	1529	0.72
n-Butanoic acid	$C_4H_8O_2$	1600	1614 [16]	600	1000	1629	1.78
n-Pentanoic acid	$C_5H_{10}O_2$	1706		700	1006	1729	1.33
2-Methylpentanoic acid	$C_6H_{12}O_2$		1746 [16]			1779	1.86
n-Hexanoic acid	$C_6H_{12}O_2$	1834	1822 [16]	800	1034	1829	0.27
n-Heptanoic acid	$C_7H_{14}O_2$	1916	1962 [15]	900	1016	1929	0.67
			1935 [16]				
n-Octanoic acid	$C_8H_{16}O_2$	2029	2072 [15]	1000	1029	2029	0
n-Nonanoic acid	$C_9H_{18}O_2$	2132	2182 [15]	1100	1032	2129	0.14
n-Decanoic acid	$C_{10}H_{20}O_2$	2238	2290 [15]	1200	1038	2229	0.4
Laurie acid	$C_{12}H_{24}O_2$	2451		1400	1051	2429	0.9
Myristic acid	$C_{14}H_{28}O_{2}$	2660		1600	1060	2629	1.17
			Average	10	28.55 ± 17.94		
				(100Z +	$\Sigma m_i - \Sigma n_i$		
Cyclobutane carboxylic acid	$C_5H_8O_2$		[1831 [16]	700 +	110 + 1029	1839	0.44
Cyclopentane propionic acid	$C_8H_{14}O_2$		2169 [16]	1000 +	122 + 1029	2151	0.83
Cyclopentane carboxylic acid	$C_6H_{10}O_2$		1932 [16]	800 +	122 + 1029	1951	0.97

[&]quot; See footnote in Table III.

TABLE VI COLUMN DIFFERENCES AND I VALUES OF METHYL ESTERS OF ALIPHATIC ACIDS ON NON-POLAR AND POLAR COLUMNS^a

The GRFs $(m_i \text{ and } n_i)$ have the following values: (1) ethyl ester group = +270, (2) ether -0- linkage = +70.

Compound	Formula	$I_{ m obs}$		Column	
		On SE-30	On CW-20M	difference (AI)	
Methyl esters				AMERICAN STATE OF THE STATE OF	
Methyl propionate	$C_4H_8O_2$	613	900	287	
Methyl butyrate	$C_5H_{10}O_2$	711	1000	289	
Methyl pentanoate	$C_6H_{12}O_2$	808	1109	301	
Methyl hexanoate	$C_{7}H_{14}O_{2}$	908	1200	292	
Methyl heptanoate	$C_8H_{16}O_2$	1007	1302	295	
Methyl octanoate	$C_9H_{18}O_2$	1110	1400	290	
Methyl nonanoate	$C_{10}H_{20}O_{2}$	1200	1507	307	
Methyl decanoate	$C_{11}H_{22}O_{2}$	1309	1600	291	
Methyl laurate	$C_{13}H_{26}O_2$	1503	1800	297	
			Average	294.33 ± 6.42	

TABLE VI (continued)

Compound	Formula	I_{obs}		Column	vo (4ħ	
		On SE-30	On CW-20M	difference (AI)		
Ethyl esters	1.7					
Ethyl acetate	$C_4H_8O_2$	600	900	300		
Ethyl propionate	$C_5H_{10}O_2$		966			
Ethyl butyrate	$C_6H_{12}O_2$	787	1046	262		
Ethyl pentanoate	$C_7H_{14}O_2$	885	1149	264		
Ethyl hexanoate	$C_8H_{16}O_2$	982	1246	264		
Ethyl heptanoate	$C_9H_{18}O_2$	1084	1345	261		
Ethyl octanoate	$C_{10}H_{20}O_{2}$	1180	1451	271		
Ethyl nonanoate	$C_{11}H_{22}O_2$	1282	1552	270		
Ethyl decanoate	$C_{12}H_{24}O_{2}$	1378	1645	267		
Ethyl laurate	$C_{14}H_{28}O_2$	1537	1848	275		
			Average	274.44 <u>+</u>	11.99	
Propyl esters						
Propyl acetate	$C_5H_{10}O_2$		986			
Propyl propionate	$C_6H_{12}O_2$	794	1059	265		
Propyl butyrate	$C_7H_{14}O_2$	882	1137	255		
Propyl pentanoate	$C_8H_{16}O_2$	980	1233	253		
Propyl hexanoate	$C_9H_{18}O_2$	1080	1337	257		
Propyl heptanoate	$C_{10}H_{20}O_{2}$	1177	1434	257		
Propyl octanoate	$C_{11}H_{22}O_2$	1277	1539	262		
Propyl nonanoate	$C_{12}H_{24}O_{2}$	1376	1631	255		
Propyl decanoate	$C_{13}H_{26}O_{2}$	1471	1729	258		
Propyl laurate	$C_{15}H_{30}O_2$	1661	1930	269		
			Average	259.00	£ 5.27	
Butyl esters						
Butyl formate	$C_5H_{10}O_2$	712	1033	321		
Butyl propionate	$C_7H_{14}O_2$	891	1157	266		
Butyl butyrate	$C_8H_{16}O_2$	979	1227	248		
Butyl valerate	$C_9H_{18}O_2$	1078	1336	258		
Butyl hexanoate	$C_{10}H_{20}O_{2}$	1175	1427	252		
Butyl heptanoate	$C_{11}H_{22}O_2$	1278	1533	255		
Butyl nonanoate	$C_{13}H_{26}O_{2}$	1470	1725	255		
			Average	255.67	± 6.09	
		Lit. [16]	$(100Z + \Sigma m_i)$ and	$\sum n_i$)	I_{p}	Difference (%)
2-Ethoxyethanol, acetate	$C_6H_{12}O_3$	1290	900 + 270 + 70		1240	3.88
Ethylene glycol diacetate	$C_6H_{11}O_4$	1539	$1000 + 2 \times 270$		1540	0.06
2-(2-Butoxyethoxy)ethanol, acetate	$C_{10}H_{20}O_4$	1838	1400 + 270 + 2 >	< 70	1810	1.52
Triethylene glycol, diacetate	$C_{10}H_{18}O_6$	2337	$1600 + 2 \times 270 +$		2337	2.44

[&]quot; See footnote in Table III.

position of the phenol can interact and hydrogen bond with the adjacent phenolic –OH group to mask its functionality and reduce *I*. The decrease in *I* of the *o*-isomers is attributed to *ortho* effect *b* and is obtained as the difference between the I values of the o-isomer and the m-isomer. In the absence of para effect, the I values of the p-isomer may be used for that of the m-isomer.

TABLE VII

COMPARISON OF OBSERVED AND PREDICTED I VALUES OF SOME MIXED ACID ESTERS^a

The GRFs (m_i and n_i) have the following values: (1) non-terminal C=C double bond = +60, (2) methyl ester group = +295, (3) conjugation of the -C = C - C = O group in alkane chain = +53, (4) cyclohexane ring = +123, (5) cyclopentadiene ring = +210. (6) O atom in 5-membered ring = +80, (7) conjugation of -C = C - C = O group in 5-membered ring = +106, (8) phenyl ring = +350, (9) cyclopentane ring = +122, (10) ortho effect b between methyl and carboxy group = -400°. (11) carbothoxy group = +270, (12) butyl ester group = +256, (13) propyl ester group = +259, (14) ortho effect b between two carbothoxy groups = -900°.

Compound	Formula	$I_{ m obs}$	Lit. [16]	$100Z + \Sigma m_i$ and Σn_i	I_{p}	Difference (%)
Crotonic acid, methyl ester	C ₅ H ₈ O ₂		1108	700 + 60 + 295 - 53	1108	0
Methyl cyclohexane carboxylate	$C_8H_{13}O_2$	1384		1000 + 123 + 295	1418	2.39
2-Furoic acid, methyl ester	$C_6H_6O_3$		1570	900 + 210 + 80 - 295 + 106	1591	1.32
Methyl benzoate	$C_8H_8O_2$	1678	1614	1000 + 350 + 295	1645	1.97
Tetrahydrofurfuryl alcohol						
propionate	$C_8H_{14}O_3$	1635		1100 + 122 + 80 + 295	1597	2.32
Phenyl acetate	$C_8H_8O_2$	1660		1000 + 350 + 295	1645	0.9
o-Tolyl acetate	$C_9H_{10}O_2$	1716		1100 + 350 + 295 - 40	1705	0.64
Ethyl benzoate	$C_9H_{10}O_2$	1718	1659	1100 + 350 + 270	1720	0.12
m-Tolyl acetate	$C_9H_{10}O_2$	1756		1100 + 350 + 295	1745	0.63
p-Tolyl acetate	$C_9H_{10}O_2$	1769		1100 + 350 + 295	1745	1,36
Benzyl acetate	$C_9H_{10}O_2$	1779		1100 + 350 + 295	1745	1,91
Ethyl phenylacetate	$C_{10}H_{12}O_{2}$	1821		1200 + 350 + 270	1820	0.05
2-Phenylethyl acetate	$C_{10}H_{12}O_2$	1854		1200 + 350 + 295	1845	0.49
n-Butyl benzoate	$C_{11}H_{14}O_2$	1903		1300 + 350 + 256	1906	0.16
2-Furoic acid, propyl ester	$C_8H_{10}O_3$		1696	1100 + 210 + 80 + 259	1649	2.77
2-Furoic acid, hexyl ester	$C_{11}H_{16}O_3$		2000	1400 + 210 + 80 + 256	1946	2.7
n-Amyl benzoate	$C_{12}H_{16}O_2$	2017		1400 - 350 + 256	2006	0.55
Methyl p-anisate	$C_9H_{10}O_3$	2084		1200 + 350 + 295 + 190	2035	1.31
Ethyl cinnamate	$C_{11}H_{12}O_2$	2173		1400 + 350 + 60 + 270 + 53	2133	1.84
n-Heptyl benzoate	$C_{14}H_{20}O_2$	2217		1600 + 350 + 256	2206	0.5
m-Phenylene diacetate	$C_{10}H_{10}O_4$	2301		$1400 + 350 + 2 \times 295$	2340	1.67
Dimethyl phthalate	$C_{10}H_{10}O_4$	2325		$1400 + 350 + 2 \times 295$	2340	0.64
Dicthyl phthalate	$C_{12}H_{14}O_4$	2400		$1600 + 350 + 2 \times 270 + "90"$	2400	0
n-Decyl benzoate	$C_{17}H_{26}O_{2}$	2519		1900 + 350 + 256	2506	0.52
Benzyl benzoate	$C_{14}H_{12}O_2$	2638		$1600 + 2 \times 350 + 295$	2595	1.66

[&]quot; See footnote in Table III.

Ethers and sulfides

On non-polar columns the ethers behave chromatographically as hydrocarbons, but on polar columns the ethers are retained longer. The free electron pairs on the ether oxygen atom can interact with the polar stationary phase to prolong the retention of the ether. The straight chain aliphatic ether oxygen has a GRF value of +70.

Oxygen attached to the phenyl ring can assume a co-planar configuration with the ring and enhance retention. Aromatic ether -O- linkage has a *GRF* of

+ 190 in anisole. In diphenyl ether the bulky substituents can sterically hinder the interaction of the ether oxygen with the stationary phase to reduce the GRF value. A comparison of the observed and predicted I values of ethers is given in Table XII.

The GRF for the sulfide group is +256 and that for the disulfide group is +377. The sulfide group is similar to an ether in structure except that the ether oxygen is replaced with a sulfur atom. The sulfur atom is assigned an equivalency of two carbon atoms and contributes 200 units in I.

TABLE VIII

COMPARISON OF OBSERVED AND PREDICTED I VALUES OF ACID AMIDES⁴

The GRF_5 have the following values: (1) amido $-CO-NH_2$ group = +1600, (2) amido -CO-NHR group = +1430, (3) amido $-CO-NR_2$ group = +1016, (4) for the value of A, the I increment for atom addition, see text, (5) $-NH-C_2H_5$ group = -50, (6) phenyl ring = +350, (7) tertiary N atom in aryl ring = +240.

Compound	Formula	$I_{ m obs}$	Lit. [16]	$AZ + \Sigma m_i$	I_p	Difference (%)
Formamide	CH ₁ NO	1791		3 × 45 + 1600	1735	3.13
Acetamide	C ₂ H ₄ NO	1775	1725	$4 \times 45 + 1600$	1780	2.81
Propionamide	C_3H_6NO	1821	1801	$5 \times 45 + 1600$	1825	0.22
N-Methylformamide	C ₂ H ₅ NO		1615	$4 \times 45 + 1430$	1610	0.31
N-Methylacetamide	C ₃ H ₆ NO	1648	1609	$5 \times 45 + 1430$	1655	0.42
N-Ethylacetamide	C_4H_9NO		1608	$6 \times 45 + 1430 - 50$	1650	2.55
N-Methylpropionamide	C_4H_8NO	1690	1645	$6 \times 45 + 1430$	1700	0.59
N-Butylacetamide	$C_6H_{13}NO$		1793	$8 \times 45 + 1430$	1790	0.17
N-Allylacrylamide	C_6H_9NO		1871	$8 \times 45 + 1430 + 2 \times 40$	1870	0.05
N,N-Dimethylformamide	C ₃ H ₆ NO	1327	1312	$5 \times 64 + 1016^{b}$	1336	0.67
N,N-Dimethylacetamide	C ₄ H ₈ NO	1409	1384	$6 \times 64 + 1016$	1400	0.64
N,N-Diethylformamide	$C_5H_{11}NO$		1413	$7 \times 64 + 1016 - 50$	1414	0.07
N,N-Dimethylpropionamide	C ₅ H ₁₀ NO	1454		$7 \times 64 + 1016$	1464	0.68
N,N-Dibutylformamide	C ₉ H ₁₉ NO		1744	$11 \times 64 + 1016$	1720	1.38
N-Methylformanilide	C_8H_9NO		2027	$10 \times 64 + 1016 + 350$	2006	1.04
N,N-Diethylnicotinamide	$C_{10}H_{14}N_2O$		2353	$13 \times 64 + 1016 + 350 +$		
•	-			$240 - 2 \times 50$	2338	0.64

[&]quot; See footnote in Table III.

TABLE IX GRF (Δm_t) OF ALCOHOL HYDROXYL GROUP AND COMPARISON OF OBSERVED AND PREDICTED I VALUES HOMOLOGOUS PRIMARY ALIPHATIC ALCOHOLS*

Compound	Formula	$I_{ m obs}$	Lit.	100 <i>Z</i>	$\Delta m_{ m f}$	$I_{\mathfrak{p}}$	Difference (%)	
Methanol	CH₄O	909		200	709	847	6.82	
Ethanol	C ₂ H ₆ O	944		300	644	947	0.32	
1-Propanol	C_3H_8O	1025	1027 [16]	400	625	1047	2.1	
1-Butanol	$C_4H_{10}O$	1141	1135 [16]	500	641	1147	0.52	
1-Pentanol	C ₅ H ₁₂ O	1236	1200 [16]	600	636	1247	0.88	
1-Hexanol	$C_6H_{14}O$		1367 [15]	700	667	1347	1.46	
1-Heptanol	$C_7H_{16}O$	1440	1470 [15]	800	640	1447	0.48	
1-Octanol	$C_8H_{18}O$		1573 [15]	900	673	1547	1.65	
1-Decanol	$C_{10}H_{22}O$	1735	1778 [15] 1752 [16]	1100	635	1747	0.69	
1-Dodecanol	$C_{12}H_{26}O$	1950	1983 [15]	1300	650	1947	0.15	
1-Tetradecanol	$C_{14}H_{30}O$	2157		1500	657	2147	0.46	
1-Hexadecanol	$C_{16}H_{34}O$	2352		1700	652	2347	0.21	
1-Heptadecanol	C ₁₇ H ₃₆ O	2475		1800	657	2447	0.41	
1-Octadecanol	$C_{18}H_{38}O$	2534		1900	634	2547	0.51	
				Avera	ge 647.00	± 13.91		

^a See footnote in Table III. Regression equation for homologues of n-alkanols: $I = 100.54 \ Z + 641.34$.

^b Regression equation for N,N-disubstituted acid amides: $I = 63.50 Z \pm 1015.67$.

TABLE X COMPARISON OF OBSERVED AND PREDICTED I VALUES OF SOME ALCOHOLS (ON DB-WAX) o

The GRFs (m_i and n_i) have the following values: (1) aliphatic secondary alcohol -OH = +530. (2) aliphatic tertiary alcohol -OH = +410, (3) terminal C=C double bond = +40, (4) chain branching = -50, (5) aliphatic primary alcohol -OH = +647, (6) terminal C-C triple bond = +300, (7) quaternary C atom = -100, (8) 5-membered alicyclic ring = +122, (9) alicyclic -OH = +580, (10) alkyl ether O-link = -70, (11) alkyl -Cl atom = +464, (12) 6-membered alicyclic ring = +123, (13) difference between cis and trans isomer = +50, (14) cyclohexene ring = +208, (15) alkyl -Br atom = +592, (16) cycloheptane ring = +183. (17) aryl ether -O-linkage = +190.

Compound	Formula	$I_{ m obs}$	Lit. [16]	$100Z + \Sigma m_i - \Sigma n_i$	$I_{\mathfrak{p}}$	Difference
2-Propanol tertButyl alcohol tertAmyl alcohol	C_3II_8O $C_4II_{10}O$ $C_5H_{12}O$	942 916 1015	PERSONAL PROPERTY AND ASSESSMENT OF THE PERSON OF THE PERS	400 + 530 500 + 410 600 + 410	930 910 1010	0.96 0.66 0.49
2-Methyl-3-buten-2-ol 2-Butanol 2,3-Dimethyl-2-butanol	$C_5H_{10}O \\ C_4H_{10}O \\ C_6H_{14}O$	1031	1023 1082 1082	600 + 410 + 40 $500 + 530$ $700 + 410 - 50$	1050 1030 1060	2.57 0.1 2.03
2-Methyl-i-propanol 2-Pentanol 3-Pentanol	$C_4H_{10}O \\ C_5H_{12}O \\ C_5H_{12}O$	1092	1110 1110	500 + 647 - 50 $600 + 530$ $600 + 530$	1097 1130 1130	0.46 1.77 1.77
Allyl alcohol 1-Methoxy-2-propanol 4-Methyl-2-pentanol	$C_3H_6O \\ C_4H_{10}O_2 \\ C_6H_{14}O$	1122 1135 1181	1110	400 + 647 + 40 $600 + 530$ $700 + 530 - 50$	1087 1130 1180	3.12 0.44 0.08
3-Ethyl-3-pentane 2-Methyl-3-butyn-2-ol 3-Methyl-1-butanol	$C_7H_{16}O \\ C_5H_8O \\ C_5H_{12}O$	1230 1231	1196	800 - 410 600 - 410 - 300 - 100 600 + 647 - 50	1210 1210 1197	1.16 1.63 3.09
3,3-Dimethyl-1-butanol 2-Methyl-2-heptanol 2-Ethyl-1-butanol Cyclopentanol 2-Propyn-1-ol 2-Methoxy-1-butanol	$C_6H_{14}O$ $C_8H_{18}O$ $C_6H_{14}O$ $C_5H_{10}O$ C_3H_4O C_3H_4O $C_5H_{12}O_2$	1312 1327 1357	1249 1280 1297 1359	700 + 647 - 100 $900 + 410$ $700 + 647 - 50$ $600 + 122 + 580$ $400 + 647 + 300$ $700 + 647 + 70 - 50$	1247 1310 1297 1302 1347 1367	0.16 2.29 1.14 1.88 0.74 0.59
6-Methyl-2-heptanol 2-Chloroethanol Cyclohexanol	$C_8H_{18}O$ C_2H_5OCl $C_6H_{12}O$	1379 1400	1365 1392	900 + 530 - 50 $300 + 647 + 464$ $700 + 123 + 580$	1380 1411 1403	1.09 2.27 0.21
2-Methyl cyclohexanol trans 3-Methyl cyclohexanol trans (32%) cis (68%)	$C_7H_{14}O$ $C_7H_{14}O$	1438 1459 1482	1409	800 + 123 + 580 - 50 800 + 123 + 580 - 50	1453 1453	1.03
4-Methyl cyclohexanol trans (18%) cis (82%) 2-Cyclohexen-1-ol 2-Bromoethanol	$C_7H_{14}O$ C_6H_8O C_2H_5BrO	1456 1476 1479	1447 1430 1492	800 + 123 + 580 - 50 700 + 208 + 580 300 + 647 + 592	1453 1488 1539	1.56 0.6 3.05
Tetrahydrofurfuryl alcohol Cycloheptanol 1,3-Propanediol	$ C_5H_{10}O_2 $ $ C_7H_{14}O $ $ C_3H_8O_2 $	1496 1789	1547	700 + 122 + 647 800 + 183 + 530 $500 + 2 \times 647$	1469 1513 1794	1.8 2.2 0.28
Benzyl alcohol Diethylene glycol 2[2-(2-Methoxyethoxy)-ethoxy]- ethanol	C ₇ H ₈ O C ₄ H ₁₀ O ₃		1857 1953 1963	$800 + 350 + 647$ $700 + 2 \times 647$ $1100 + 647 + 3 \times 70$	1797 1994 1957	3.23 2.06 0.31
etnanoi α-Butyl benzyl alcohol 2-(Benzyloxy)ethanol 2-Phenoxyethanol	$C_7H_{16}O_4$ $C_{11}H_{16}O$ $C_9H_{12}O_2$ $C_8H_{10}O_2$	2129	2050 2139	1200 + 530 + 350 1200 + 530 + 350 1100 + 350 + 70 + 647 1000 + 350 + 190 + 647	2080 2167 2187	1.44 1.75 2.19

[&]quot; See footnote in Table III.

TABLE XI

COMPARISON OF OBSERVED AND PREDICTED I VALUES OF PHENOLS AND THIOLS^a

The GRFs (m_i and m_i) have the following values: (1) phenyl ring = +350, (2) aryl thiol-SH group = +340, (3) alkyl thiol-SH group = +370, (4) phenolic -OH group = +900, (5) aryl Cl atom = +276, (6) ortho effect b between -OH and -Cl = -"390", (7) aryl ether -O- linkage = +190, (8) ortho effect b between -OH and -OC₂H₅ groups = -"610", (9) ortho effect b between -OH and -OC₄H₅ groups = -"100", (11) ortho effect b between -OH and -Cl₄ groups = -"100", (12) ortho effect a between two adjacent methyl groups = +"50", (13) terminal C=C double bond = +40, (14) ortho effect b between -OH and allyl group = -"150", (15) aryl Br atom = +426, (16) ortho effect b between -OH and -Br atom = -"242", (17) quaternary C atom = -100, (18) ortho effect b between -OH and tert. butyl group = -"90".

Compound	Formula	I_{obs}	Lit. [16]	$100Z + \Sigma m_i - \Sigma n_i$	$I_{\mathfrak{p}}$	Difference (%)
Benzene thiol	C ₆ H ₆ S		1491	800 + 350 + 340	1490	0.07
Benzyl mercaptan	C_7H_8S		1618	900 + 350 + 370	1620	0.12
o-Chlorophenol	C ₆ H ₅ ClO		1830	700 + 350 + 900 + 276 - "390"	1836	0.33
o-Ethoxyphenol	$C_8H_{10}O_2$		1831	1000 + 350 +900 + 190 - "610"	1830	0.05
Guaiacol	$C_7H_8O_2$		1840	900 + 350 + 900 + 190 - 500	1840	0
2,6-Dimethylphenol	$C_8H_{10}O$		1889	$900 + 350 + 900 - 2 \times "100"$	1950	3.13
o-Cresol	C_7H_8O		1979	800 + 350 + 900 - "100"	1950	1.47
Phenol	C_6H_6O	1954		700 + 350 + 900	1950	0.2
2-Ethylphenol	$C_8H_{10}O$		2044	900 + 350 + 900 - "100"	2050	0.29
p-Cresol	C_7H_8O		2055	800 + 350 + 900	2050	0.24
m-Cresol	C_7H_8O		2059	800 + 350 + 900	2050	0.44
2,3-Dimethylphenol	$C_8H_{10}O$		2120	900 + 350 + 900 + "50" - "100"	2100	0.94
2-Allylphenol	$C_9H_{10}O$		2132	1000 + 350 + 900 + 40 - "150"	2140	0.37
o-Bromophenol	C ₆ H ₅ BrO		2134	700 + 350 + 900 + 426 - "242"	2134	0
3,5-Dimethylphenol	$C_8H_{10}O$		2146	900 + 350 + 900	2150	0.19
3-Ethylphenol	$C_8H_{10}O$		2151	900 + 350 + 900	2150	0.05
o-tertButyl phenol	$C_{10}H_{14}O$		2161	1100 + 350 + 900 - 100 - "90"	2160	0.05
3,4-Dimethylphenol	$C_8H_{10}O$		2189	900 + 350 + 900 + "50"	2200	0.5
m-Ethoxyphenol	$C_8H_{10}O_2$		2427	1000 + 350 + 900 + 190	2440	0.53

^a See footnote in Table III.

Aldehydes and ketones

Aliphatic aldehyde and ketone groups are different in their attachment to C and H atoms but share the same *GRF* value. A similar situation also prevails for these groups on non-polar column. The keto group attached to a phenyl ring has the same *GRF* of +388 as for aliphatic ketones, but the keto group attached to an alicyclic ring has a higher *GRF* value of +465. Tables XIII and XIV show the comparison of observed and predicted *I* values of aliphatic, alicyclic and aromatic aldehydes and ketones.

In aromatic aldehydes and ketones, the 1,4 or para substituents can extend their conjugation through the phenyl ring to increase *I*; in contrast, the *ortho* substituents can mutually interact and hydrogen

bond to decrease *I. p*-Hydroxybenzaldehyde, *p*-dimethylaminobenzaldehyde and *p*-anisaldehyde belong to the first category and salicylaldehyde, 2'-hydroxyacetophenone and *o*-anisaldehyde to the second category. The effects of extended conjugation and hydrogen bonding are given, respectively, in terms of *GRF* values under the name of *para* effect and *ortho* effect *b* in Table I.

Aliphatic amines

The N and O atoms have electronegativity values of 3.0 and 3.5, respectively, as compared to 2.5 for the C atom [19]. This difference is reflected in the GRFs of the amino and hydroxyl groups. The aliphatic amino -NH₂ group is less polar than the

TABLE XII

COMPARISON OF OBSERVED AND PREDICTED I VALUES OF ETHERS AND SULFIDES^a

The GRFs $(m_i \text{ and } n_i)$ have the following values: (1) aliphatic ether -O- linkage = +70, (2) sulfide -S- linkage = +256, (3) terminal C = C double bond = +40, (4) chain branching = -50, (5) aliphatic sulfide -S-S- linkage = +377, (6) tertiary C atom = -75, (7) phenyl ring = +350, (8) aryl ether -O- linkage = +190, (9) link between two phenyl rings = +80.

Compound	Formula	Iobs	Lit. [16]	$100Z + \Sigma m_i - \Sigma n_i$	I_{p}	Difference (%)
Ethyl ether Propyl ether Butyl ether	$C_4H_{10}O \\ C_6H_{14}O \\ C_8H_{18}O$	616 782 971	1842	500 + 70 700 + 70 900 + 70	570 770 9 70	7.47 0.15 0.1
Pentyl ether Hexyl ether Octyl ether	$C_{10}H_{22}O \\ C_{12}H_{26}O \\ C_{16}H_{34}O$	1163 1368 1763	1161 1359	1100 + 70 1300 + 70 1700 + 70	1 1 70 1370 1770	0.6 0.15 0.39
Allyl sulfide (2-Ethylhexyl) vinyl ether Butyl sulfide	${f C_6 H_{10} S} \ {f C_{10} H_{20} O} \ {f C_8 H_{18} S}$		1151 1168 1256	$800 + 256 + 2 \times 40$ 1100 + 70 + 40 - 50 1000 + 256	1136 1160 1256	1.3 0.68 0
tertButyl disulfide Anisole 1,2-Dibutoxyethane	$C_8H_{18}S_2 \\ C_7H_8O \\ C_{10}H_{22}O_2$	1340	1323 1348	$1200 + 377 - 2 \times 75$ $800 + 350 + 190$ $1200 + 2 \times 70$	1727 1340 1340	0.23 0 0.59
Isopentyl sulfide Propyl disulfide Phenetole (ethoxybenzene)	${ m C_{10}H_{22}S} \\ { m C_6H_{14}S_2} \\ { m C_8H_{10}O}$	1377	1359 1383	$1200 + 256 - 2 \times 50$ $1000 + 377$ $900 + 350 + 190 - 50$	1356 1377 1390	0.22 0 0.5
sobutyl disulfide Benzyl ethyl ether n-Methylanisole	$C_8H_{18}S_2$ $C_9H_{12}O$ $C_8H_{10}O$		1428 1438 1441	$1200 + 377 - 2 \times 50$ $1000 + 350 + 70$ $900 + 350 + 190$	1477 1420 1440	3.32 1.25 0.07
Butyl disulfide p-Dimethoxybenzene Bis(2-butoxyethyl)ether	$C_8H_{18}S_2 \\ C_8H_{10}O_2 \\ C_{12}H_{26}O_3$		1567 1715 1727	$1200 + 377 1000 + 350 + 2 \times 190 1500 + 3 \times 70$	1577 1730 1710	0.63 0.87 0.98
1,3-Dimethoxybenzene Pentyl disulfide Phenyl ether	$C_8H_{10}O_2 \\ C_{10}H_{22}S_2 \\ C_{12}H_{10}O$	2055	1737 1768	$1000 + 350 + 2 \times 190$ $1400 + 377$ $1300 + 2 \times 350 + 70$	1730 1777 2 0 70	0.4 0.51 0.72
Phenyl sulfide o-Phenylanisole Benzyl ether	$C_{12}H_{10}S$ $C_{13}H_{12}O$ $C_{14}H_{14}O$		2287 2246 2356	$1400 + 2 \times 350 + 256$ $1400 + 2 \times 350 + 190$ $1500 + 2 \times 350 + 70$	2356 2270	2.97 3.65
p-Phenoxyanisole	$C_{13}H_{12}O_2$		2438	$1500 + 2 \times 350 + 190 + 80$	2470	1.3

^a See footnote in Table III. Average GRF value for the alkyl ether linkage = 69.50 ± 7.01 .

alcoholic—OH group on polar column. The GRF for the aliphatic amino—NH₂ group is +416 as against +647 for the aliphatic primary alcoholic—OH group. Plotting the I values of the homologous primary amines against Z yields a straight line, as shown in Fig. 1. The A and GRF values for the aliphatic amines are given in Table I.

The aliphatic primary amino (-NH₂) group has a column difference of about +280. When the -NH₂

group is attached to a secondary or a tertiary carbon atom, the GRF is reduced to +350 or +229, respectively. The GRF value of the imino groups in the N,N-dialkyl-substituted secondary amines, such as dibutylamine, is about +180 but that for the N-alkyl-N-aralkyl substituted secondary amines is about +260. The GRF values for the tertiary N atom in N,N,N-trialkylsubstituted amines may vary with the size of the substituted alkyl groups.

TABLE XIII

COMPARISON OF OBSERVED AND PREDICTED I VALUES OF ALIPHATIC ALDEHYDES AND KETONES⁴

The GRFs (m_i and n_i) have the following values: (1) "peripheral" aliphatic aldehyde or ketone group = +388, (2) "inner" keto group or 4 position of the carbon chain = +355, (3) chain branching = -50, (4) non-terminal C=C double bond = +60, (5) conjugation -C=C-C=0 group in alkane chain = +53.

Compound	Formula	$I_{ m obs}$	Lit.	$100Z + \Sigma m_i - \Sigma n_i$	I_{p}	Difference (%)
Acetone	C₃H ₆ O	816		400 + 388	788	3.43
Propanal	C_3H_6O	782		400 + 388	788	0.76
2-Methylpropanal	C_4H_8O		824 [15]	500 + 388 - 50	838	1.67
2-Butanal	C_4H_8O		910 [16]	500 + 388	888	2.42
3-Methyl butanal	$C_5H_{10}O$		928 [15]	600 + 388 - 50	938	1.07
3-Pentanone	$C_5H_{10}O$		977 [16]	600 + 388	988	1.11
2-Pentanone	$C_5H_{10}O$		992 [15]	600 + 388	988	0.4
2-Methyl-3-pentanone	$C_6H_{12}O$		1000 [16]	700 + 355 - 50	1005	0.5
4-Methyl-2-pentanone	$C_6H_{12}O$		1019 [15]	700 + 388 - 50	1038	1.83
			1012 [16]			
2-Butenal	C_4H_6O		1038 [16]	500 + 388 + 60 + 53	1001	3.56
3-Hexanone	$C_6H_{12}O$		1048 [16]	700 + 355	1055	0.66
2-Methyl-3-hexanone	$C_7H_{14}O$		1066 [16]	800 + 355 - 50	1105	3.53
2-Hexanone	$C_6H_{12}O$		1078 [16]	700 + 388	1088	0.92
Hexanal	$C_6H_{12}O$		1094 [15]	700 + 388	1088	0.54
Heptanal	$C_7H_{14}O$		1195 [15]	800 + 388	1188	0.59
2-Heptanone	$C_7H_{14}O$		1194 [15]	800 + 388	1188	0.5
•			1180 [16]			
3-Heptanone	$C_7H_{14}O$		1124 [16]	800 + 355	1155	2.68
3-Octanone	$C_8H_{16}O$		1252 [16]	900 + 355	1255	0.24
Octanal	$C_8H_{16}O$		1297 [15]	900 + 388	1288	0.69
5-Nonanone	$C_9H_{18}O$		1325 [16]	1000 + 355	1355	2.21
Nonanal	$C_9H_{18}O$		1400 [15]	1000 + 388	1388	0.86
Decanal	$C_{10}H_{20}O$		1504 [15]	1100 + 388	1488	1.06
2-Heptadecanone	$C_{17}H_{34}O$		2148 [15]	1800 + 388	2188	1.83

^a See footnote in Table III. Average GRF value for the aldehyde group = 387.92 ± 17.55 .

The functionality of the tertiary amino groups in triethylamine, N,N-diethylbenzylamine, tributylamine, tripentylamine, tribenzylamine, etc. decreases with increasing size of the substituent groups. Plotting the GRF difference, namely $(I_{obs} - I_p)$, of the tertiary amines against Z yields a linear relationship, as shown in Fig. 2. This means that bulky substituents tend to diminish I, and the GRF of the tertiary amino group decreases in proportion to the bulkiness of the substituents. This finding is in accord with an early observation that the highly substituted amines behave chromatographically as

n-alkanes [1]. Table XV shows the observed a predicted *I* values of some alkyl and alicyclic amin

Aromatic amines

Aromatic amino groups in aniline, anisidi toluidine, etc. have higher GRF values than aliphatic amino groups, owing to co-planar configuration of the molecule as a result of conjugati with the phenyl ring. In the planar configuration primary aromatic amino group is retained longer the column and has a GRF of +667, considera higher than that of the aliphatic primary am

TABLE XIV

COMPARISON OF OBSERVED AND PREDICTED I VALUES OF ALICYCLIC AND AROMATIC ALDEHYDES AND KETONES^a

Compound	Formula	$I_{ m obs}$	Lit. [16]	$100Z + \Sigma m_i - \Sigma n_i$	I_{p}	Difference (%)
Cyclopentanone	C ₅ H ₈ O		1187	600 + 122 + 465	1187	0
Cyclohexanone	$C_6H_{10}O$		1289	700 + 123 + 465	1288	0.8
2-Methylcyclohexanone	$C_7H_{12}O$		1305	800 + 123 + 465 - 50	1338	2.47
3-Methylcyclohexanone	$C_7H_{12}O$		1324	800 + 123 + 465 - 50	1338	1.05
4-Methylcyclohexanone	$C_7H_{12}O$		1339	800 + 123 + 465 - 50	1338	0.07
2-Cyclopenten-1-one	C ₅ H ₆ O		1347	600 + 163 + 465 + 106	1334	0.97
Cycloheptanone	$C_7H_{12}O$		1417	800 + 183 + 465	1448	2.14
2-Furaldehyde	$C_5H_4O_2$		1456	700 + 122 + 80 + 465	1455	0.07
Benzaldehyde 3,5,5-Trimethyl-2-cyclo-	C_7H_6O	1517	1513	800 + 350 + 388	1538	1.36
hexen-1-one 3,5-Dimethyl-2-cyclo-	$C_9H_{14}O$		1577	1000 + 208 + 465 + 40 - 100	1613	2.23
hexen-1-one	$C_8H_{12}O$		1597	900 + 208 + 465 + 40 - 50	1563	2.13
Acetophenone	C_8H_8O	1643		900 + 350 + 388	1638	0.3
Salicylaldehyde	$C_7H_6O_2$		1665	900 + 350 + 900 + 388 - "870"	1668	0.18
Propiophenone	$C_9H_{10}O$		1712	1000 + 350 + 388	1738	1.49
p-Isopropylbenzaldehyde	$C_{10}H_{12}O$		1767	1100 + 350 + 388 - 50	1788	1.17
2'-Hydroxyacetophenone	$C_8H_8O_2$		1784	1000 + 350 + 900 + 388 - "870"	1768	0.9
2-Bromobenzaldehyde	C_7H_5BrO		1838	800 + 350 + 388 + 426 - "126"	1838	0
Benzylacetone	$C_{10}H_{12}O$	1851		1100 + 350 + 388	1838	0.7
o-Anisaldehyde	$C_8H_8O_2$		1941	1000 + 350 + 388 + 190	1928	0.67
2-Bromoacetophenone	C ₈ H ₇ BrO		1971	900 + 350 + 388 + 386	2024	2.62
p-Anisaldehyde	$C_8H_8O_2$	2014	2000	1000 + 350 + 388 + 190 + 60	1988	0.6
p-Methoxypropiophenone	$C_{10}H_{12}O_2$		2179	1200 + 350 + 388 + 190	2128	2.34
2-Aminoacetophenone	C_8H_9NO		2187	$1000 \pm 350 \pm 388 \pm 417$	2155	1.46
I-Naphthaldehyde	$C_{11}H_8O$		2364	$1200 + 2 \times 350 + 60 + 388$	2348	0.68
Benzophenone	$C_{13}H_{10}O$	2457		$1400 + 2 \times 350 + 388$	2488	1.25
p-Dimethylaminobenzaldehyde	$C_9H_{11}NO$	2459		1100 + 350 + 388 + 260 + "360"	2458	0.04

[&]quot; See footnote in Table III.

group. Secondary aromatic amines with two aryl substituents or with one alkyl and one aryl substituent on N atoms have GRFs of +586 or +523, respectively. Tertiary aromatic amino groups with one aryl and two alkyl substituents on N atom as in

N,N-dimethylaniline, have a GRF of about +310, which may vary with the bulkiness of the substituents.

Table XVI shows the comparison of observed and predicted *I* values of some aromatic amines.

Heterocyclics

Ring compounds containing nitrogen and oxygen heteroatoms are functionally complex, which renders the prediction of I difficult. The number and position of aza and oxo atoms in the ring, ring size, degree of saturation, aromaticity, conjugation, position of substituents, etc. can all affect the A and GRF values. These compounds are difficult to chromatograph, because traces of moisture and unexpected interaction with the stationary phase can cause large variations. The oxo rings are less complex than the aza rings. The nitrogen atom in the ring, being trivalent, can bond as secondary and tertiary amines, and together with the ring function and conjugation, these groups can contribute differently to I. In comparison, the bivalent oxygen atom has its bonding orbitals completely satisfied in ring formation.

The ring oxygen is assigned a GRF value of +80 per atom in the 5-membered ring and +160 per atom in the 6-membered ring. Since the number of oxo compounds studied is small, these values are only tentative.

The *GRF*s of the functional groups in the aza rings are difficult to assess individually and independently because of the lack of homologs for comparative study. In the following we rank the aza moieties present in 5-membered and 6-membered rings according to their contribution to the *I* of the analyte: (i) Aza and diaza moieties in 5-membered rings:

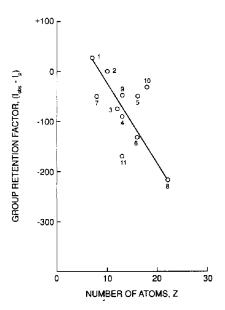


Fig. 2. The relationship between the GRFs of tertiary amine function and the size of substituent groups, expressed as the number of atoms (Z) in N,N,N-trisubstituted alkylamines. Z and GRF are given sequentially in parentheses following the name of the tertiary amine. The points plotted are: 1 = triethylamine (7, +27); 2 = N,N-dimethylbenzylamine (10, 0); 3 = N,N-diethylbenzylamine (12, -76); 4 = tributylamine (13, -93); 5 = N-methyldibenzylamine (16, -49); 6 = tripentylamine (16, -131); 7 = N,N-dimethylaniline (9, -50); 8 = tribenzylamine (22, -215); 9 = 2,2',2''-trimethyltriallylamine (13, -46); 10 = N-methyldioctylamine (18, -30); 11 = N,N-dimethylnaphthylamine (13, -170).

(ii) Aza and diaza moieties in 6-membered rings:

$$=C-N=N-C=$$
 (aromatic) $> =C-N=C-N=$ (aromatic) $> -N=C-C=N-$ (aromatic) $=C-N=C-$ (aromatic) $+ 760$) (+240)

The *GRF*s of the aza moieties are listed in parentheses below each structural moiety. The *GRF*s of these functional groups are specific for the 5- and 6-membered ring structures. A breakdown in terms of contributions from individual functions is given in Tables XVII and XVIII. These *GRF*s have not been widely tested on other aza compounds besides those listed. The general trend is for the highly conjugated N atoms in the ring to contribute the most to the RI, followed by the imino -NH- group connected to two double bonds and then the tertiary amine nitrogen. Similar aza moieties in 5-membered rings have higher *GRF*s than in 6-membered rings,

and additional ring N atoms introduce new *GRF*s to increase *I*. The *I* values of pyridines and quinolines are more readily predicted than those of diazines and diazoles. A comparison of the observed and predicted *I* values of 5-membered and 6-membered heterocyclics is given in Tables XVII and XVIII.

Water gives a peak with a *I* of 1066 on polar column with thermal conductivity detector. This peak may appear when a hygroscopic sample is chromatographed.

Alkyl halides

The I values of chloroalkanes, bromoalkanes and

TABLE XV

COMPARISON OF OBSERVED AND PREDICTED / VALUES OF ALIPHATIC AMINES⁴

The GRFs (m_i and n_i) have the following values: (1) $-CH_2-NH_2$ group = +417, (2) tertiary amino group = +"27", = +"27", = -"30", -"30", -"46", -"93" (see text), (3) $-C-NH_2$ group = +229, (4) $-CH-NII_2$ group = +350, (5) quaternary C atom = -100, (5) chain branching = -50, (6) alkyl ether -O-linkage = +70, (7) terminal C -C double bond = +40, (8) alkyl imino -NH-R group = +180.

Compound	Formula	I_{obs}	Lit. [16]	$100Z + \Sigma m_i - \Sigma n_i$	$I_{\mathbf{p}}$	Difference (%)
n-Propylamine	C ₃ H ₉ N	816		400 + 417	817	0.12
<i>n</i> -Butylamine	$C_4H_{11}N$	908		500 + 417	917	0.98
<i>n</i> -Pentylamine	$C_5H_{13}N$	1018		600 + 417	1017	0.1
n-Hexylamine	$C_6H_{15}N$	1113		700 + 417	1117	0.36
n-Heptylamine	$C_7H_{17}N$	1213		800 + 417	1217	0.33
n-Decylamine	$C_{10}H_{23}N$	1522		1100 + 417	1517	0.33
n-Dodecylamine	$C_{12}H_{27}N$	1716		1300 + 417	1717	0.06
n-Octadecylamine	$C_{18}H_{39}N$	2330		1900 + 417	2317	0.56
Triethylamine	$C_6H_{15}N$	727		700 + "27"	727	0
tertButyl amine	$C_4H_{11}N$	729		500 + 229	729	0
secButyl amine	$C_4H_{11}N$	864		500 + 350	850	1.62
2-Amino-3,3-dimethylbutane	$C_6H_{15}N$	948		700 + 350 - 100	950	0.21
Isoamylamine	$C_5H_{13}N$	989		600 + 417 - 50	967	2.22
2-Amino-1-methoxypropane	$C_4H_{11}NO$	1050		600 + 70 + 350	1020	2.86
Dibutylamine	$C_8H_{19}N$		1092	900 + 180	1080	1.1
2-Aminoheptane	$C_7H_{17}N$	1158		800 + 350	1150	0.69
3-Aminoheptane	$C_7H_{17}N$	1137		800 + 350	1150	1.13
Tributylamine	$C_{12}H_{27}N$	1207	1206	1300 - "93"	1207	0
Tripentylamine	$C_{15}H_{33}N$	1469		1600 — "131"	1469	0
2,2',2"-Trimethyltriallylamine	$C_{12}H_{21}N$		1224	$1300 \pm 3 \times 40 - 3 \times 50 - 46$	1224	0
N-Ethylbenzylamine	$C_9H_{13}N$		1543	1000 - 350 - 180	1530	0.84
N-Propylbenzylamine	$C_{10}H_{15}N$		1624	1100 - 350 + 180	1630	0.37
N-Butylbenzylamine	$C_{11}H_{17}N$		1726	1200 - 350 + 180	1730	0.23
N-Methyldioctylamine	$C_{17}H_{37}N$		1770	1800 — "30"	1770	0
Dibenzylamine	$C_{14}H_{15}N$		2473	$1500 + 2 \times 350 + 180$	2380	3.76

[&]quot; See footnote in Table III.

TABLE XVI
COMPARISON OF OBSERVED AND PREDICTED I VALUES OF AROMATIC AMINES^a

The GRFs (m_i and n_i) have the following values: (1) cyclohexane ring = +123, (2) alicyclic primary -NH₂ group = +350, (3) chain branching = -50, (4) tertiary Ar-NR₂ group = +310, (5) tertiary amino group = "0", -"30", -"50", -"170", -"49" or -"215" (see text), (6) -N-C₂H₅ group = -60, (7) ortho effect b between -CH₃ and -N(C₂H₅)₂ = -"300", (8) aralkyl alkyl imino -NH-group = +260, (9) alkyl -NH₂ group = +417, (10) aryl alkyl imino -NH group = +523, (11) aryl -NH₂ group = +667, (12) ortho effect b between -C₂H₅ and -NH₂ groups = -"70", (13) aryl -OCH₃ group = +190, (14) ortho effect b between -OCH₃ and -NH₂ groups = "160", (15) quaternary C atom = -100.

Compound	Formula	$I_{ m obs}$	Lit. [16]	$100Z + \Sigma m_i - \Sigma n_i$	$I_{\rm p}$	Difference (%)
Cyclohexylamine	C ₆ H ₁₃ N	1222	1155	700 + 123 + 350	1173	1.53
3-Methyl cyclohexylamine	$C_7H_{10}N$	1400		800 + 123 + 350 - 50	1450	3.49
N,N-Dimethylbenzylamine	$C_9H_{13}N$		1350	1000 + 350 + "0"	1350	0
N,N-Diethyl-o-toluidine	$C_{11}H_{17}N$		1428	$1200 + 350 + 310 - 2 \times 60 - 300$	1440	0.83
N,N-Dimethylaniline	$C_8H_{11}N$	1510	1538	900 + 350 + 310 - 50	1510	0
N-Ethylbenzylamine	$C_9H_{13}N$	1577		1000 + 350 + 260 - 60	1550	1.72
Phenethylamine	$C_8H_{11}N$	1638		900 + 350 + 417	1667	1.74
N,N-Diethylaniline	$C_{10}H_{15}N$	1660	1620	$1100 + 350 + 310 - 2 \times 60$	1640	1.2
N,N-Dimethyl-o-toluidine	$C_9H_{13}N$		1679	1000 + 350 + 310	1660	1.13
N-Methylaniline	C_7H_9N	1686	1711	800 + 350 + 523	1673	0.77
Aniline	C_6H_7N	1710	1740	700 + 350 + 667	1717	0.41
N-Ethylaniline	$C_8H_{11}N$	1761	1717	900 + 350 + 523 - 60	1713	2.73
N-Methyl-dioctylamine	$C_{17}H_{37}N$		1770	1800 - "30"	1770	0
N-Methyl-p-toluidine	$C_8H_{11}N$		1780	900 + 350 + 523	1773	0.39
o-Toluidine	C_7H_9N	1800	1789	800 + 350 + 667	1817	0.94
N-Ethyl-m-toluidine	$C_9H_{13}N$		1802	1000 + 350 + 523 - 60	1813	0.6
p-Toluidine	C_7H_8N	1822		800 + 350 + 667	1817	0.27
m-Toluidine	C_7H_8N	1849	1831	800 - 350 + 667	1817	1.73
o-Ethylaniline	$C_8H_{11}N$		1848	900 + 350 + 667 - 70	1847	0.05
N-Butylaniline	$C_{10}H_{15}N$		1893	1100 + 350 + 523	1973	4.05
2,4-Dimethylaniline	$C_8H_{11}N$	1903		900 + 350 + 667	1917	0.73
o-Anisidine	C_7H_9NO	1946		900 + 350 + 190 + 667 - "160"	1947	0.05
p-tertButylaniline	$C_{10}H_{15}N$		2011	1100 + 350 + 667 - 100	2017	0.3
N,N-Dimethylnaphthylamine	$C_{12}H_{13}N$		2100	$1300 + 2 \times 350 + 60 + 310 - "170"$	2100	0
m-Anisidine	C ₇ H ₉ NO		2176	900 + 350 + 190 + 667	2107	3.17
N-Methyldibenzylamine	$C_{15}H_{17}N$		2251	$1600 + 2 \times 350 - 49$	2251	0
N-Benzyl-N-methylaniline	$C_{14}H_{15}N$		2430	$1500 + 2 \times 350 + 260$	2460	1.22
N,N-Diphenylmethylamine	$C_{13}H_{13}N$		2450	$1400 + 2 \times 350 + 310$	2410	1.63
Dibenzylamine	$C_{15}H_{15}N$	2427	2473	$1500 + 2 \times 350 + 260$	2460	0.53
Diphenylamine	$C_{12}H_{11}N$	2586		$1300 + 2 \times 350 + 586$	2586	0
Tribenzylamine	$C_{21}H_{21}N$	3035		$2200 + 3 \times 350 - 215$	3035	0

[&]quot; See footnote in Table III.

iodoalkanes are predicted by assuming the GRFs for chlorine, bromine and iodine atoms to be +464, +592 and +710, respectively. These are the averages of the $\Delta m_{\rm f}$ values of the halo atoms in chloroalkanes, bromoalkanes and iodoalkanes, as

shown in Table XIX. The individual $\Delta m_{\rm f}$ values of each halo atom show a gradual increase within the series with chain lengthening. Plotting the $\Delta m_{\rm f}$ values against the number of carbon atoms yields a straight line, with the slope increasing from chloro-

TABLE XVII

COMPARISON OF OBSERVED AND PREDICTED I VALUES OF HETEROCYCLIC COMPOUNDS⁴

In the 5-membered ring the GRFs (m_i and n_i) have the following values: (1) cyclopentadiene ring = +210, (2) O atom in the ring = +80, (3) alicyclic aldehyde group = +465, (4) S atom in the ring = +200, (5) cyclopentane ring = +122, (6) $-N(CH_3)$ - group in the ring = +140, (7) imino -NH- group in the ring = +380, (8) cyclopentene ring = +163, (9) one C=C bond in azole ring = +40, (10) two C=C bonds in azole ring = +190, (11) C=C-NH-C=C group in the ring = +800, (12) additional N atom at the α position of the ring = +300, (13) methyl group ortho to ring N = -70, (14) phenyl ring = +350, (15) additional N atom at the β position of the N-methylated azole ring = +550, (16) additional N atom at the β position of the azole ring = +700.

Compound	Formula	$I_{ m obs}$	Lit. [16]	$100Z + \Sigma m_i - \Sigma n_i$	$I_{\mathfrak{p}}$	Difference (%)
Furan group						
Furan	C_4H_4O	800		500 + 210 + 80	790	1.25
{Water	H_2O	1066		(See text)}		
2-Furaldehyde	$C_5H_4O_2$		1447	700 + 210 + 465 + 80	1455	0.51
5-Methylfuraldehyde	$C_6H_6O_2$		1562	800 + 210 + 465 + 80	1555	0.45
Thiophene group						
Thiophene	C_4H_4S	1022	1025	600 + 210 + 200	1010	1.17
Pyrrolidine group						
1-Methyl pyrrolidine	$C_5H_{11}N$	861		600 + 122 + 140	862	0.12
Pyrrolidine	C_4H_9N	1003		500 + 122 + 380	1002	0
Perhydroindole	$C_8H_{15}N$	1468		900 + 123 + 122 + 380	1525	3.88
3-Pyrroline	C_4H_5N	1066		500 + 163 + 380 + 40	1083	1.57
Pyrrole group						
1-Methyl pyrrole	C_5H_7N	1142	1139	600 + 210 + 140 + 190	1140	0.18
Pyrrole	C_4H_5N	1511	1508	500 + 210 + 800	1510	0.07
Pyrazole (1,2-diazole)	$C_3H_4N_2$	1826		500 + 210 + 800 + 300	1810	0.88
3-Methyl pyrazole	$C_4H_6N_2$	1863		600 + 210 + 800 + 300 - 70	1840	1.23
4-Methyl pyrazole	$C_4H_6N_2$	1929		600 + 210 + 800 + 300	1910	0.98
Indazole	$C_7H_6N_2$	2556		900 + 350 + 210 + 800 + 300	2560	0.16
1-Methyl imidazole	$C_4H_6N_2$	1700	1638	600 + 210 + 140 + 190 + 550	1690	0.59
2-Methyl imidazole	$C_4H_6N_2$	2238		600 + 210 + 800 + 700 - 70	2240	0.09
Imidazole (1,3-diazole)	$C_3H_4N_2$	2254		500 + 210 + 800 + 700	2210	1.51
4-Methyl imidazole	$C_4H_6N_2$	2289		600 + 210 + 800 + 700	2240	2.14

[&]quot; See footnote in Table III.

alkanes to bromoalkanes to iodoalkanes, as shown in Fig. 3.

The increase in the slope of these linear plots of haloalkanes and the increase of the $\Delta m_{\rm f}$ value in ascending each series are associated with the change in polar-to-non-polar moiety ratio on chain lengthening and electronic effects of the halo atom. The halo atom can exert mesomeric and inductive effects. The mesomeric effect and hyperconjugation may dominate in the lower haloalkanes and the inductive effect in the higher ones. That the three lower iodoalkanes show marked deviation from the

linear relationship in Fig. 3 may be attributed to these factors.

The GRF of the halo atoms is influenced by the presence of other functional groups in the molecule. For example, the GRFs of the halo atoms in haloarenes or haloalicyclics are smaller than those in haloalkanes. It may be noted that the GRFs of the halo atoms include not only the GRFs but also the carbon atom equivalency of the halo atoms. The implication of this inclusion will be discussed in a future communication [20].

TABLE XVIII

COMPARISON OF OBSERVED AND PREDICTED / VALUES OF HETEROCYCLIC COMPOUNDS^a

In the 6-membered ring the GRFs (m_i and n_i) have the following values: (1) cyclohexane ring = +123, (2) O atom in the ring = +160, (3) phenyl ring = +350, (4) cyclopentane ring = +122, (5) O atom in 5-membered ring = +80, (6) -N(CH₃)- in the ring = +200, (7) a second imino -NH-group in the ring containing -N(CH₃)- group = +240, (8) imino -NH-group in the ring = +325, (9) methyl group ortho to ring N = -70, (10) chain branching = -50, (11) cycloheptane ring = +183, (12) tertiary -N = in the ring = +240, (13) 1,4-diaza group = +30, (14) 1,3- diaza group = +80, (15) 1,2-diaza group = +520, (16) trans isomer-cis isomer = -60, (17) N atom in the iso position of fused heterocyclic rings = +40, (18) methyl group in peri position to ring N = -100, (19) methyl group in the para position of ring N = +70, (20) aryl ether -O- linkage = +190.

Compound	Formula	$I_{ m obs}$	Lit. [16]	$100Z + \Sigma m_i - \Sigma n_i$	$I_{ m p}$	Difference (%)
Dioxane group						
1,4-Dioxane	$C_4H_8O_2$	1059		$600 + 123 + 160 \times 2$	1043	1.51
S-Trioxane	$C_3H_6O_3$	1167		$600 + 123 + 160 \times 3$	1203	2.99
1,4-Benzodioxane	$C_8H_8O_2$		1800	$1000 + 350 + 123 + 160 \times 2$	1793	0.39
1,3-Benzodioxole	$C_7H_6O_2$		1531	$900 + 350 + 122 + 80 \times 2$	1573	2.67
1-Methylpiperidine group						
1-Methyl piperidine	$C_6H_{13}N$	1020		700 + 123 + 200	1023	0.29
1-Methyl piperazine	$C_5H_{12}N_2$	1262	1204	700 + 123 + 200 + 240	1263	0.08
Piperidine group						
Piperidine	$C_5H_{11}N$	1049		600 + 123 + 325	1048	0.09
2-Methyl piperidine	$C_6H_{13}N$		1017	700 + 123 + 325 - 70 - 50	1028	1.07
2,6-Lupetidine	$C_7H_{15}N$		1009	$800 + 123 + 325 - 70 \times 2 - 50 \times 2$	1008	0.1
4-Methyl piperidine	$C_6H_{13}N$	1075		700 + 123 + 325 - 50	1100	2.29
3-Methyl piperidine	$C_6H_{13}N$	1081		700 + 123 + 325 - 50	1100	1.73
Hexamethylene imine	$C_6H_{13}N$	1178		700 + 183 + 325	1208	2.48
Piperazine	$C_4H_{10}N_2$	1391		$600 + 123 + 325 \times 2$	1373	1.29
Homopiperazine	$C_5H_{12}N_2$	1525		$700 + 183 + 325 \times 2$	1533	0.25
Pyridine group						
Pyridine	C_5H_5N	1191		600 + 350 + 240	1190	0.08
Pyrazine (1,4-diazine)	$C_4H_4N_2$	1224		600 + 350 + 240 + 30	1220	0.33
Methyl pyrazine	$C_5H_6N_2$		1259	700 + 350 + 240 + 30 - 70	1250	0.71
Pyrimidine (1,3-diazine)	$C_4H_4N_2$	1276	1257	600 + 350 + 240 + 80	1275	0.31
4-Methyl pyrimidine	$C_5H_6N_2$	1328		700 + 350 + 240 + 80 - 70	1300	2.11
Pyridazine (1,2-diazine)	$C_4H_4N_2$	1716		600 + 350 + 240 + 520	1710	0.35
3-Methyl pyridazine	$C_5H_6N_2$	1750		700 + 350 + 240 + 520 - 70	1740	0.57
2-Picoline	C_6H_7N		1210	700 + 350 + 240 - 70	1220	0.82
3-Picoline	C_6H_7N		1283	700 + 350 + 240	1290	0.54
4-Picoline	C_6H_7N		1300	700 + 350 + 240	1290	0.08
2,6-Lutidine	C_7H_9N		1241	$800 + 350 + 240 - 70 \times 2$	1250	0.72
3,5-Lutidine	C_7H_9N		1400	800 + 350 + 240	1390	0.71
Quinoline group						
Perhydro isoquinoline	$C_9H_{17}N$	1520 trans)		$1000 + 123 \times 2 + 325 - 60$	1511	0.59
(cis + trans)		1560 (cis)		$1000 + 123 \times 2 + 325$	1571	0.7
Quinoline	C_9H_7N	1942		$1000 + 350 \times 2 + 240$	1940	0.1
Isoquinoline	C_9H_7N	1980		$1000 + 350 \times 2 + 240 + 40$	1980	0
8-Methylquinoline	$C_{10}H_9N$	1959		$1100 + 350 \times 2 + 240 - 100$	1940	0.97
Quinaldine						
(2-methylquinoline)	$C_{10}H_9N$	1970		$1100 + 350 \times 2 + 240 - 70$	1970	0
7-Methyl quinoline	$C_{10}H_9N$	2053		$1100 + 350 \times 2 + 240$	2040	0.63
6-Methyl quinoline	$C_{10}H_9N$	2062		$1100 + 350 \times 2 + 240$	2040	1.07
4-Methyl quinoline (lepidine)	$C_{10}H_9N$	2108	2080	$1100 + 350 \times 2 + 240 + 70$	2110	0.09
6-Methoxyquinoline	C ₁₀ H ₉ NO		2353	$1200 + 350 \times 2 + 240 + 190$	2330	0.98

[&]quot; See footnote in Table III.

TABLE XIX

CALCULATION OF Δm_f AND COMPARISON OF OBSERVED AND PREDICTED I VALUES OF 1-HALOALKANES^a

The GRFs have the following values: (1) chlorine atom in R-CH₂-Cl = +464, (2) bromine atom in R CH₂-Br = +592, (3) bromine atom connected to secondary carbon atom = +492, (4) iodine atom in R-CH₂-I = +710.

Compound	Formula	$I_{ m obs}$	100 <i>Z</i>	$\Delta m_{\rm f}$	$I_{ ho}$	Difference (%)
1-Chloroalkanes						
1-Chloropropane	C_3H_7Cl	739	300	439	764	3.27
1-Chlorobutane	C ₄ H ₉ Cl	842	400	442	864	2.55
1-Chloropentane	C ₅ H ₁₁ Cl	945	500	445	964	1.97
1-Chlorohexane	$C_6H_{13}Cl$	1050	600	450	1064	1.32
1-Chloroheptane	$C_7H_{15}Cl$	1154	700	454	1164	0.86
1-Chlorooctane		1262	800	462	1264	0.16
1-Chlorononane	C ₈ H ₁₇ Cl		900	464	1364	0
	C ₉ H ₁₉ Cl	1364				
1-Chlorodecane	$C_{10}H_{21}Cl$	1474	1000	474	1464	0.68
1-Chlorotetradecane	$C_{14}H_{29}Cl$	1889	1400	489	1864	1.32
1-Chlorohexadecane	$C_{16}H_{33}Cl$	2094	1600	494	2064	1.43
1-Chlorooctadecane	$C_{18}H_{37}Cl$	2294	1800	494 -	2264	1.31
			Average	2 464.27	± 20.72	
-Bromoalkanes						
1-Bromobutane	C_4H_9Br	955	400	555	992	3.87
1-Bromopentane	$C_5H_{11}Br$	1042	500	542	1092	4.58
1-Bromohexane	$C_6H_{13}Br$	1163	600	563	1192	2.43
1-Bromoheptane	$C_7H_{15}Br$	1256	700	556	1292	2.79
1-Bromooctane	$C_8H_{17}Br$	1385	800	585	1392	0.5
1-Bromononane	$C_9H_{19}Br$	1496	900	596	1492	0.27
1-Bromodecane		1578	1000	578	1592	0.88
1-Bromoundecane	$C_{10}H_{21}Br$					
	$C_{11}H_{23}Br$	1717	1100	617	1692	1.46
I-Bromododecane	$C_{12}H_{25}Br$	1818	1200	[618]	1792	1.43
1-Bromotetradecane	$C_{14}H_{29}Br$	2037	1400	637	1992	2.1
1-Bromohexadecane	$C_{16}H_{33}Br$	2237	1600	637	2192	2.01
1-Bromooctadecane	$C_{18}H_{37}Br$	2447	1800	647	2392	2.17
			Average	592.00 ±	35.63	
2- and 3-Bromoalkanes						
2-Bromobutane	C_4H_9Br	905	400	505	892	1.44
2-Bromopentane	$C_5H_{11}Br$	984	500	484	992	0.81
3-Bromopentane	$C_5H_{11}Br$	994	500	494	992	0.2
2-Bromoheptane	$C_7H_{15}Br$	1173	700	473	1192	1.59
2-Bromodecane	$C_{10}H_{23}Br$	1493	1000	493	1492	0.07
2-Bromododecane	$C_{12}H_{25}Br$	1702	1200	502	1692	0.59
			Average -	491.83 ±	11.82	
I-Iodoalkanes						
1-Iodoethane	C_2H_5I	876	200	676	910	3.74
I-Iodoemane I-Iodopropane	C_2H_5I C_3H_7I	965	300	665	1910	4.46
I-Iodobutane	C ₄ H ₉ I	1065	400	665	1110	4.05
1-Iodopentane	$C_5H_{11}I$	1175	500	675	1210	2.89
l-Iodohexane	$C_6H_{13}I$	1286	600	686	1310	1.83
I-Iodoheptane	$C_7H_{15}I$	1400	700	700	1410	0.71
1-Iodooctane	$C_8H_{17}I$	1508	800	708	1510	0.13
I-Iodononane	$C_9H_{19}I$	1621	900	721	1610	0.68
I-lododecane	$C_{10}H_{21}I$	1734	1000	734	1710	1.38
1-Todoundecane	$C_{11}H_{23}I$	1842	1100	742	1810	1.74
	$C_{12}H_{25}I$	1953	1200	753	1910	2.2
1-Iodododecane						
1-Iodododecane 1-Iodohexadecane	$C_{16}H_{33}I$	2400	1600	800	2310	3.73

[&]quot; See footnote in Table III.

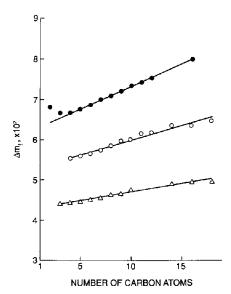


Fig. 3. Linear plots of the *GRF* increment or the functionality constant (Δm_t) vs. the number of carbon atoms in 1-haloalkanes. \bullet = 1-Iodoalkanes; \bigcirc = 1-bromoalkanes; \triangle = 1-chloroalkanes.

CONCLUSIONS

The retention mechanism in gas chromatography is complex and may involve a number of factors, such as partition between the gas phase and the stationary liquid phase, adsorption at the gas-liquid interface, H-bonding and dipolar interaction with the stationary phase, the electronic nature and configuration of the analyte molecule, etc. [5]. In a homologous series, each member differs from its near neighbors by a methylene group, which allows the same retention mechanism to prevail for all members of the series and leads to a linear relationship between I and the number of carbon and carbon equivalent atoms (n or Z). This is the theoretical basis for the prediction of I, using A, Z and GRF values.

Accurate A and GRF values are essential to the prediction. In many cases, the gradual change of the polar-to-non-polar moiety ratio in ascending or descending the homologous series exerts a definite effect on GRF. The effect is less on non-polar than on polar stationary phases and may be augmented in certain homologous series. As the polar-to-non-polar ratio decreases to near zero, the I value of

the analyte will approach the base value. This explains why substituted compounds such as acid esters, tertiary amines and silylated derivatives show chromatographic characteristics similar to that of aliphatic hydrocarbons.

The I values of a wide range of compounds, such as acids, alcohols, amines, acid esters, aldehydes, ketones, ethers, aromatic hydrocarbons, alicyclics, heterocyclics, etc. on polar column are predicted by this method to within 3% error. The procedure used for prediction of I is similar to that for non-polar columns. In general, the I values of compounds of monofunctionality are accurately predicted. The I values of compounds of polyfunctionality are difficult to predict, because the functional groups often interact intramolecularly to alter the GRF and also the A values, as in the case of α -amino acids and acid amides. To apply the rule of additivity without the correct A and GRF values will lead to either over- or under-estimate of I. For example, the free and substituted acid amides have an A value that is considerably less than 100 (see Table VIII); the methyl substitution at the ortho position to the nitrogen atom in heterocyclics contributes only a fraction of the full I increment. According to an early report, methyl substitutions at the α , β , and γ positions of the pyridine ring contribute differently to I [21]. Substituents at the ortho positions of the phenyl ring tend to interact with each other to lower I generally by hydrogen bonding or steric hindrance. Substitutions at the para positions may cause an increase in I. In addition, identical N-containing moieties in 5-membered and 6-membered aza and diaza rings yield different GRF values. The ring constraint in the 5-membered rings accentuates the GRFs of these moieties. The effect of multi-substitution and poly-functionality on GRF are not well understood, but studies using homologous series may clarify some of these complexities.

From the structure—retention index relationship, one can derive a set of general rules to guide the prediction of *I*. These are as follows: (i) molecules which contain multiple O and N atoms will have high *I* values in comparison to molecules that do not, (ii) molecules which have highly conjugated systems containing N and O atoms tend to give higher *I* values than those that do not, (iii) molecules which contain quaternary carbon atoms and functional groups connected to secondary or tertiary carbon

atoms have lower I values than those that do not, and (iv) highly substituted molecules tend to yield lower I values than those that are not.

Strong electron attracting and donating substituents that contain F. N and O atoms can generate unusual A and GRF values. This may also include atoms connected to multi-substituent groups. The magnitudes of the GRF value and the column difference depend upon the polarity and polarizability of the substituent group and the stationary phase. The well-known Rohrschneider and McReynolds constants may be mentioned as examples of utilizing the *GRF* related parameters and column differences (ΔI values) of selected compounds to characterize the selectivity and the polarity and polarizability of chromatographic stationary phases [22–24]. According to our method, the ratio of the GRF values for a given functional group or substituent on various chromatographic stationary phases can probably yield direct information about the polarity of the stationary phases and the magnitude of the I values of the analytes.

The structure retention-index relationship formulated thus far for non-polar and polar stationary phases allows us to link chemical structures to chromatographic data. It can predict from a glance of the structure the approximate I to prevent gross errors in assigning unreasonable I values to an analyte. The method of predicting I from structure and vice versa is useful, especially in tentatively identifying unknown products formed from parent molecules in a chemical reaction. We have applied this method with success in identifying radioactive by-products in tritium labeling by radiation-induced methods and in elucidating the associated labeling mechanisms.

ACKNOWLEDGEMENTS

This publication was made possible by grant number CA33537 from the National Cancer Institute. We thank Gloria Dela Cruz for patiently typing the manuscript.

REFERENCES

- C. T. Peng, S. F. Ding, R. L. Hua and Z. C. Yang, J. Chromatogr., 436 (1988) 137.
- 2 H. van den Dool and P. D. Kratz, J. Chromatogr., 11 (1963) 463
- 3 SAS/STATTM User's Guide, Release 6-03 Edition, SAS Institute, Cary. NC, 1988, pp. 854–857.
- 4 E. Kováts, Helv. Chim. Acta, 41 (1958) 1915.
- 5 R. Kaliszan, Quantitative Structure-Chromatographic Retention Relationship, Wiley, New York, 1987, pp. 1-50.
- 6 F. P. Woodford and C. M. van Gent, J. Lipid Res., 1 (1960) 188
- 7 R. G. Ackman, J. Chromatogr. Sci., 10 (1972) 345.
- 8 R. Aderjan and M. Bogusz, J. Chromatogr., 454 (1988) 345.
- 9 T. R. Schwartz and J. D. Petty, Anal. Chem., 55 (1983) 1839.
- 10 A. Gröbler, J. Chromatogr. Sci., 10 (1972) 128.
- 11 S. J. Hawkes, J. Chromatogr. Sci., 10 (1972) 535.
- 12 G. Tarján, Sz. Nyiredy, M. Györ, E. R. Lombosi, T. S. Lombosi, M. V. Budahegyi, S. Y. Mészáros and J. M. Takács, J. Chromatogr., 472 (1989) 1.
- 13 M. B. Evans and J. K. Haken, J. Chromatogr., 472 (1989) 93.
- 14 E. Kováts, Adv. Chromatogr., 1 (1965) 229.
- 15 Analabs Capillary Column Application Note No. 1, The Foxboro Company, New Haven, CT, 1985.
- 16 The Sadtler Standard Gas Chromatography Retention Index Library, Vols. 1–4, Sadtler Research Libraries, Division of Bio-Rad Laboratories, Philadelphia, PA, 1986.
- 17 R. Kaliszan and H. Lamparczyk. J. Chromatogr. Sci., 16 (1978) 246.
- 18 A. T. Balaban, I. Motoc, D. Bonchev and O. Mekenyan, in M. Charton and I. Motoc (Editors), Steric Effects in Drug Design (Topics in Current Chemistry, No. 114), Springer, Verlag, Berlin, 1983, pp. 21-55.
- 19 L. Pauling, The Nature of the Chemical Bond, Cornell University Press, Ithaca, NY, 1948, p. 58.
- 20 C. T. Peng, J. Chromatogr., submitted for publication.
- 21 A. L. Samusenko and R. V. Golovnya, Chromatographia, 25 (1988) 531.
- 22 L. Rohrschneider, J. Chromatogr., 22 (1966) 6.
- 23 W. R. McReynolds, J. Chromatogr. Sci., 8 (1970) 685.
- 24 S. K. Poole, B. R. Kersten, R. M. Pomaville and C. K. Poole, LC GC, 6 (1988) 400.